scholarly journals Electrochemical Biosensor Based on Furosemide-Gold Nanoparticles for The Determination of Dopamine for Practical Applications

In this study, by taking the advantage of the facile & controlled synthesis of furosemide derived gold nanoparticles (Fr-AuNps) for rapid and sensitive amperometric determination of dopamine (DP). The one-step synthesis of FrAuNps was carried out at room temperature without the use of strong reducing agents. The synthesized Fr-AuNps were studied by UV-Vis spectroscopy, and a strong absorption band for gold nanoparticles was observed at 520 nm. Transmission electron micrographs (TEM) revealed the average particle size below 100 nm. HRTEM showed excellent crystalline features as prepared gold nanoparticles. The electrochemical behavior of gold nanoparticles was examined by cyclic voltammetry (CV) which demonstrated the enhanced electrocatalytic kinetics activity towards the oxidation of dopamine. The presented dopamine biosensor exhibited a linear response for the dopamine in the range of 0.25 to 7 µM. The calculated the detection limit found to be 18.3 nM and limit of quantification 61.5 nM respectively. The proposed dopamine biosensor was successfully employed for the quantification of trace amount of dopamine from human serum and the obtained results are very satisfactory.

2002 ◽  
Vol 721 ◽  
Author(s):  
Monica Sorescu

AbstractWe propose a two-lattice method for direct determination of the recoilless fraction using a single room-temperature transmission Mössbauer measurement. The method is first demonstrated for the case of iron and metallic glass two-foil system and is next generalized for the case of physical mixtures of two powders. We further apply this method to determine the recoilless fraction of hematite and magnetite particles. Finally, we provide direct measurement of the recoilless fraction in nanohematite and nanomagnetite with an average particle size of 19 nm.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 808
Author(s):  
Ahmed Al Saqr ◽  
El-Sayed Khafagy ◽  
Ahmed Alalaiwe ◽  
Mohammed F. Aldawsari ◽  
Saad M. Alshahrani ◽  
...  

Green synthesis of gold nanoparticles (GNPs) with plant extracts has gained considerable interest in the field of biomedicine. Recently, the bioreduction nature of herbal extracts has helped to synthesize spherical GNPs of different potential from gold salt. In this study, a fast ecofriendly method was adopted for the synthesis of GNPs using fresh peel (aqueous) extracts of Benincasa hispida, which acted as reducing and stabilizing agents. The biosynthesized GNPs were characterized by UV–VIS and Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering. In addition, the in vitro antibacterial and anticancer activities of synthesized GNPs were investigated. The formation of gold nanoparticles was confirmed by the existence of a sharp absorption peak at 520 nm, corresponding to the surface plasmon resonance (SPR) band of the GNPs. TEM analysis revealed that the prepared GNPs were spherical in shape and had an average particle size of 22.18 ± 2 nm. Most importantly, the synthesized GNPs exhibited considerable antibacterial activity against different Gram-positive and Gram-negative bacteria. Furthermore, the biosynthesized GNPs exerted remarkable in vitro cytotoxicity against human cervical cancer cell line, while sparing normal human primary osteoblast cells. Such cytotoxic effect was attributed to the increased production of reactive oxygen species (ROS) that contributed to the damage of HeLa cells. Collectively, peel extracts of B. hispida can be efficiently used for the synthesis of GNPs, which can be adopted as a natural source of antimicrobial and anticancer agent.


2010 ◽  
Vol 43 (18) ◽  
pp. 2809-2822 ◽  
Author(s):  
T. G. Satheesh Babu ◽  
P. V. Suneesh ◽  
T. Ramachandran ◽  
Bipin Nair

2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.


2019 ◽  
Vol 9 (1) ◽  
pp. 159-166
Author(s):  
Piotr Jaśkowski ◽  
Agata Czarnigowska

AbstractThe approach used by construction companies to determine bid prices is an element of their strategy used to win jobs in competitive tenders. Such strategies build upon an analysis of the contactor’s potential and capabilities (am I able to deliver? am I eligible to participate in the tender?), and the analysis of the economic environment, including the expected behavior of competitors. The tender strategy sets out both the guidelines and the procedure in deciding whether or not to bid as well as the rules for determining the price. The price, on the one hand, should be high enough to cover expected direct and indirect costs as well as risk-adjusted profit. On the other hand, it needs to be low enough to be considered most attractive (typically: the lowest) among the prices offered by the competitors. The paper focuses on the price definition component of the bidding strategy. It provides a brief overview of the existing methods that support bidding decisions by comparing their demand for input and limitations in practical applications and presents a simulation-based method supporting the determination of the profit ratio. This probabilistic method assumes the existence of a positive correlation between the prices offered by the competitors. Its application is illustrated by means of a numerical example. The outcomes of the simulation prompt the amount of the profit margin that maximizes the expected value of the contractor’s profit.


2017 ◽  
Vol 263 ◽  
pp. 165-169
Author(s):  
Silvia Chowdhury ◽  
Faridah Yusof ◽  
Nadzril Sulaiman ◽  
Mohammad Omer Faruck

In this article, we have studied the process of silver nanoparticles (AgNPs) aggregation and to stop aggregation 0.3% Polyvinylpyrrolidone (PVP) was used. Aggregation study carried out via UV-vis spectroscopy and it is reported that the absorption spectrum of spherical silver nanoparticles were found a maximum peak at 420 nm wavelength. Furthermore, Transmission Electron Microscopy (TEM) were used to characterized the size and shape of AgNPs, where the average particle size is around 10 to 25 nm in diameter and the AgNPs shape is spherical. Next, Dynamic Light Scattering (DLS) were used, owing to observed size distribution and self-correlation of AgNPs.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Preetha Devaraj ◽  
Prachi Kumari ◽  
Chirom Aarti ◽  
Arun Renganathan

Cannonball (Couroupita guianensis) is a tree belonging to the family Lecythidaceae. Various parts of the tree have been reported to contain oils, keto steroids, glycosides, couroupitine, indirubin, isatin, and phenolic substances. We report here the synthesis of silver nanoparticles (AgNPs) using cannonball leaves. Green synthesized nanoparticles have been characterized by UV-Vis spectroscopy, SEM, TEM, and FTIR. Cannonball leaf broth as a reducing agent converts silver ions to AgNPs in a rapid and ecofriendly manner. The UV-Vis spectra gave surface plasmon resonance peak at 434 nm. TEM image shows well-dispersed silver nanoparticles with an average particle size of 28.4 nm. FTIR showed the structure and respective bands of the synthesized nanoparticles and the stretch of bonds. Green synthesized silver nanoparticles by cannonball leaf extract show cytotoxicity to human breast cancer cell line (MCF-7). Overall, this environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster than or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods, and medical applications.


2012 ◽  
Vol 1416 ◽  
Author(s):  
Guandong Zhang ◽  
Jacek Jasinski ◽  
Dhruvinkumar Patel ◽  
Kurtis James ◽  
Xinghua Sun ◽  
...  

ABSTRACTGold nanoparticles (GNPs) with precisely controlled near infrared (NIR) absorption were synthesized by one-step reaction of chloroauric acid and sodium thiosulfate. The NIR absorption wavelengths and average particle size increase with increasing molar ratio of HAuCl4/Na2S2O3. The as-synthesized GNPs consist of different shape and size, including small spherical gold colloids and larger non-spherical gold crystals. The GNPs with good chemical and optical stability only form in a suitable range of the HAuCl4/Na2S2O3 molar ratio. High molar ratio of HAuCl4/Na2S2O3 reduces GNPs stability due to Ostwald ripening. Chitosan coating improves particle stability and allows these GNPs effective ablation for esophageal adenocarcinoma under low power NIR laser radiation.


Sign in / Sign up

Export Citation Format

Share Document