scholarly journals Synthesis and Characterization of Silver Nanoparticles Using Cannonball Leaves and Their Cytotoxic Activity against MCF-7 Cell Line

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Preetha Devaraj ◽  
Prachi Kumari ◽  
Chirom Aarti ◽  
Arun Renganathan

Cannonball (Couroupita guianensis) is a tree belonging to the family Lecythidaceae. Various parts of the tree have been reported to contain oils, keto steroids, glycosides, couroupitine, indirubin, isatin, and phenolic substances. We report here the synthesis of silver nanoparticles (AgNPs) using cannonball leaves. Green synthesized nanoparticles have been characterized by UV-Vis spectroscopy, SEM, TEM, and FTIR. Cannonball leaf broth as a reducing agent converts silver ions to AgNPs in a rapid and ecofriendly manner. The UV-Vis spectra gave surface plasmon resonance peak at 434 nm. TEM image shows well-dispersed silver nanoparticles with an average particle size of 28.4 nm. FTIR showed the structure and respective bands of the synthesized nanoparticles and the stretch of bonds. Green synthesized silver nanoparticles by cannonball leaf extract show cytotoxicity to human breast cancer cell line (MCF-7). Overall, this environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster than or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods, and medical applications.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Reena Singh ◽  
Sunil Kumar Sahu ◽  
Muthusamy Thangaraj

Synthesis of metallic nanoparticles by chemical and physical method makes the process often cumbersome due the usage of toxic and expensive chemicals. The present study reports the biosynthesis of silver nanoparticles using marine invertebrate (polychaete) extract at room temperature. The ultraviolet-visible (UV-Vis) spectroscopy revealed the formation of silver nanoparticles (AgNPs) by exhibiting the typical surface plasmon absorption maximum at 418–420 nm. Structure and composition of AgNPs were analyzed by atomic force microscopy (AFM). Average particle size of AgNPs ranged from 40 to 90 nm, confirmed by scanning electron microscopy (SEM) analysis. The energy-dispersive X-ray spectroscopy (EDX) of the nanoparticles dispersion confirmed the presence of elemental silver signal, whereas X-ray diffraction (XRD) substantiated the crystalline nature of synthesized nanoparticle. Fourier transform infrared spectroscopy (FTIR) spectral analysis showed the presence of amides phenols, ethers, and fatty acids as major biomolecules responsible for the reduction of silver ions. The possible mechanism responsible for the synthesis of AgNPs by these biomolecules was also illustrated by chemical reactions. The synthesized AgNPs showed comparatively good antibacterial activity against the tested human pathogens. This study advocates that not only plants and microbes but also marine invertebrates do have potential for synthesizing nanoparticles by a cost-effective and eco-friendly approach.


2019 ◽  
Vol 15 (60) ◽  
pp. 66
Author(s):  
Naser Abbasi ◽  
Roohangiz Mameneh ◽  
Massoumeh Shafiei ◽  
Ali Aidy ◽  
Elahe Karimi ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Antonio M. Brito-Silva ◽  
Luiz A. Gómez ◽  
Cid B. de Araújo ◽  
André Galembeck

Poly(vinyl-pyrrolidone) (PVP) stabilized silver nanoparticles with an average particle size ranging from 4.3 to 4.9 nm were synthesized by laser ablation in preformed colloids in methanol, acetone, ethylene glycol, and glycerin. Aqueous colloids obtained using PVP, poly(vinyl-alcohol) (PVA), and sodium citrate as stabilizing agents also lead to a good control over particle size distribution. Silver ions were reduced with sodium borohydride. The smaller average particle size and narrower dispersivity in comparison to previously reported data were ascribed to the relatively small size of the particles formed in the chemical reduction step, laser fluence, and the use of PVP, which was not previously used as the stabilizing agent in “top-down” routes. The surface plasmon resonance band maximum wavelength shifted from 398 nm in methanol to 425 nm in glycerin. This shift must be due to solvent effects since all other variables were the same.


2017 ◽  
Vol 263 ◽  
pp. 165-169
Author(s):  
Silvia Chowdhury ◽  
Faridah Yusof ◽  
Nadzril Sulaiman ◽  
Mohammad Omer Faruck

In this article, we have studied the process of silver nanoparticles (AgNPs) aggregation and to stop aggregation 0.3% Polyvinylpyrrolidone (PVP) was used. Aggregation study carried out via UV-vis spectroscopy and it is reported that the absorption spectrum of spherical silver nanoparticles were found a maximum peak at 420 nm wavelength. Furthermore, Transmission Electron Microscopy (TEM) were used to characterized the size and shape of AgNPs, where the average particle size is around 10 to 25 nm in diameter and the AgNPs shape is spherical. Next, Dynamic Light Scattering (DLS) were used, owing to observed size distribution and self-correlation of AgNPs.


Author(s):  
Vasanth N ◽  
Melchias G ◽  
Kumaravel P

Objective: To evaluate the potential aspects of biologically synthesized silver nanoparticles mediated by Broussonetia papyrifera against the human pathogens. The same is acknowledged to have high efficiency in the field of Pharmaceutical industry.Methods: The 1Mm of AgNO3 is prepared and mixed with appropriate volume of plant extract and reaction volume was made up to 100 ml. the physical   characterization of AgNPs was done. The anti-microbial activity was done against dread pathogens. Cytotoxic activity of the AgNPs was investigated against breast and lung cancer cell lines.Results: The FESEM and EDAX of the microscopic level showed the particle surface measurements around 44 nm to 50 nm. The XRD investigations are being an evidence for the crystalline structure of the AgNPs with 30 nm. The bacterial pathogen Rhodococcus rhodochrous showed the maximum zone of inhibition (11.8±0.447). The A549 human lung cancer cell line and MCF-7 human breast cancer cell line were tested against the toxicity of AgNPs. The toxicity of AgNPs was valued and corresponding IC50 for Lung cancer (A549) is 12.95± 0.05 µg/mL and Breast cancer (MCF-7) is 10.75± 0.05 µg/mL respectively.Conclusion: The present research denotes that biomolecules derived AgNPs have larger impact as antimicrobials in the biomedical field. Since the aggressive chemicals are not involved AgNPs production, these bio-substances can of alternative medicine to resistant once. The in-vitro experiments exhibits the therapeutic effect of this AgNPs based on the ambient concentration on the process.KEYWORDS: Cancer activity, Antimicrobial agents, Resistance, Silver nanoparticles.


2019 ◽  
Vol 10 (4) ◽  
pp. 3636-3643
Author(s):  
Hor Jia Wei ◽  
Mohd. Syafiq Awang ◽  
Nor Dyana ◽  
Daruliza Kernain ◽  
Yazmin Bustami

Silver nanoparticles (AgNPs) has long known for its inhibitory and bactericidal effects. However, due to its’ attractive antibacterial property, on-going research with various synthesis strategies actively been conducted. In this study, the synthesis of AgNPs was reported, using a simple chemical reduction method with citrate as the reducing agent TEM was used to characterize the obtained AgNPs. Then, Staphylococcus aureus and Escherichia coli were used to identify the antibacterial activity of AgNPs. The inhibition effects of AgNPs against these two bacteria were observed via disc diffusion, and MIC assays and the effects of AgNPs mode of action on both bacteria were further observed under TEM. The formation of AgNPs at ̴ 400 nm, which is the surface plasmon resonance peak was observed using Uv-Vis spectroscopy. The size of AgNPs mostly in the range of 1-10 nm and their morphology appeared to be spherical. Based on the MIC assay, Escherichia coli exhibit low MIC value with 0.049 mg/ml as compared to Staphylococcus aureus with0.391 mg/ml MIC value; correspond to the effective antibacterial activity by the citrate-reduced AgNPs. Further observation on the bacterial surface structure can be seen with cross-sectional TEM image, and it provides an insight into the AgNPs mechanistic aspects of AgNPs against Staphylococcus aureus and Escherichia coli. Silver nanoparticles have been successfully synthesised using the citrate reduction method. Results obtained in this study thus elucidating promising findings to employed AgNPs as an antibacterial agent, and this composition needs to be further study and develop into an antibacterial agent.


2020 ◽  
Vol 26 (4) ◽  
pp. 489-497
Author(s):  
Elias Emenka ELEMIKE ◽  
Damian Cinedu ONWUDIWE ◽  
Tanzim SAIYED ◽  
Anthony Chinonso EKENNIA ◽  
Mayowa Akeem AZEEZ

Silver nanoparticles were prepared through an environmental friendly and cost-effective plant-mediated technique, using crude extracts of Welsh onion plant. The synthesized nanoparticles were characterized using UV-vis spectrophotometer, powdered X-ray diffractometer (p-XRD), Fourier transform infra-red (FTIR) spectrophotometer, and transmission electron microscope (TEM). Silver nanoparticles of different sizes and morphologies were obtained by varying some synthesis parameters such as concentrations of AgNO3 (1, 2 and 5 mM) and ratio of the volume of the plant extract to AgNO3 (1:5 and 1:10) at constant reaction temperature of 80 °C. The difference in the reaction conditions showed significant effects on silver nanoparticles obtained. The surface plasmon resonance (SPR) varied with change in concentration of AgNO3 and the ratio of the AgNO3 to the plant extracts. The lowest SPR appeared around 412 nm (2 mM; 1:10), while the largest was achieved around 427 nm (5 mM; 1:10). FTIR results revealed the presence of different characteristic functional groups responsible for the bioreduction of silver ions in Welsh onion extract. Transmission electron microscopy (TEM) showed that the lowest average particle size of the silver nanoparticles was 3.74 nm (2 mM; 1:10), while the highest was 15.72 nm (1 mM; 1:5). Monodispersed spherical shaped nanoparticles were obtained from the 2 mM concentration of the AgNO3, while particles with some degree of agglomeration were obtained from 1 and 5 mM concentration. The p-XRD studies revealed face centred cubic structures. The nanoparticles obtained from 1 and 5 mM (1:5) gave moderate photo-catalytic potentials in the degradation of methyl red dye. However, the photocatalytic property increased with increase in the concentration of the precursor salt (AgNO3) from 1 to 5 mM. Gram positive Staphylococcus aureus and Bacillus cereus and Gram negative Klebsiela pneumonia and Escherichia coli bacteria strains were susceptible to the silver nanoparticles (2 mM). The nanoparticles were most active against E. coli with a minimum inhibitory concentration (MIC) below 0.05 mg/mL. The silver nanoparticles could become potential compounds in the future antibiotic research.


Sign in / Sign up

Export Citation Format

Share Document