421. Evaluation of Alternative HVAC Filters: Effect on Flow Rate, Capital Expense, Maintenance Costs, and Energy Consumption Considerations

2002 ◽  
Author(s):  
P. Jensen ◽  
E. Moyer ◽  
S. Berardinelli ◽  
J. Hayes ◽  
S. Fotta
2020 ◽  
Vol 11 (1) ◽  
pp. 267
Author(s):  
Han-Tang Lin ◽  
Yunn-Horng Guu ◽  
Wei-Hsuan Hsu

Global warming, climate change, and ever-increasing energy demand are among the pressing challenges currently facing humanity. Particularly, indoor air conditioning, a major source of energy consumption, requires immediate improvement to prevent energy crises. In this study, various airfoil profiles were applied to create a window-type convection device that entrains air to improve convection between indoor and outdoor airflows and adjust the indoor temperature. How the geometric structure of the convection device affects its air entrainment performance was investigated on the basis of various airfoil profiles and outlet slit sizes of the airflow multiplier. The airfoil profiles were designed according to the 4-digit series developed by the National Advisory Committee for Aeronautics. The results revealed that airfoil thickness, airfoil camber, and air outlet slit size affected the mass flow rate of the convection device. Overall, the mass flow rate at the outlet of the convection device was more than 10 times greater than at the inlet, demonstrating the potential of the device to improve air convection. To validate these simulated results, the wind-deflector plate was processed using the NACA4424 airfoil with a 1.2 mm slit, and various operating voltages were applied to the convection device to measure the resulting wind speeds and calculate the corresponding mass flow rates. The experimental and simulated results were similar, with a mean error of <7%, indicating that the airfoil-shaped wind-deflector plate substantially improved air entrainment of the convection device to the goal of reduced energy consumption and carbon emissions.


2013 ◽  
Vol 671-674 ◽  
pp. 2476-2479
Author(s):  
Jian Guang Yu ◽  
Jian Kun Yu ◽  
Hong Wei Ma ◽  
Lei Xu

Green transport is a concept to build a comprehensive urban transport system, which aims to reduce traffic congestion and energy consumption, promoting a more friendly environment and saving building maintenance costs. From the perspective of urban design, this paper focuses on how to integrate green transport into urban design and discusses the implementation strategy of green transport.


Author(s):  
Thaithat Sudsuansee ◽  
Narong Wichapa ◽  
Amin Lawong ◽  
Nuanchai Khotsaeng

In citronella oil extraction process by steam distillation, inefficient use of steam is the main cause of excessive energy consumption that affects energy cost and oil yield. This research is aimed to reduce the energy cost and increase the oil yield by studying the steam used in the process. The proposed method is the three-stage extraction model combined with the Data Envelopment Analysis developed by Charnes, Cooper and Rhodes (DEA-CCR model). Although the three-stage extraction model has been widely used, there is no research integrate this model with DEA-CCR model. It is well known that DEA-CCR model is an effective tool to evaluate efficiency of decision making units/alternatives. The advantages of this research were presented as the calculation of the optimum distillation conditions, including the steam flow rate and the distillation time, were achieved as discussed in this article. The study was comprised of 3 parts. Firstly, the three-stage extraction model for citronella oil was formulated. Secondly, the results of the proposed model were calculated under different conditions, classified by steam flow rates from 5,000 to 60,000 cm3/min for the distillation period of 15–180 min. Finally, the DEA-CCR model was utilized to evaluate and rank alternatives. The results expressed that the best condition for producing citronella oil was at the steam flow rate of 40,000 cm3/min and the distillation time of 60 min. The optimal energy cost and percentage of oil yield were equal to 0.440 kWh/mL and 0.7%, respectively. When comparing to the experimental results, the percentage error of optimal energy cost and oil yield were slightly different, with a value of 0.98% and 0.85%, respectively. Moreover, the energy consumption was also reduced by 34.6% compared to the traditional operating conditions.


2020 ◽  
Vol 24 (6) ◽  
pp. 63-77
Author(s):  
Natthiyar Aeamsuksai ◽  
Thirawat Mueansichai ◽  
Pongtorn Charoensuppanimit ◽  
Pattaraporn Kim-Lohsoontorn ◽  
Farid Aiouache ◽  
...  

This research investigates the process simulation of sodium methoxide (NaOCH3) synthesis from methanol (CH3OH) and sodium hydroxide (NaOH) under three synthesis schemes: schemes A, B, and C. Scheme A consisted of one equilibrium reactor and two distillation columns, scheme B one reactive distillation column and one distillation column, and scheme C one reactive distillation column and pervaporation membrane. The simulation parameters included CH3OH/NaOH feed flow ratio (1.2-1.6), number of stages (5-30), bottom flow rate (1400-1600 kg/h), and feed stage location (5, 10, 15, 20, 21, 22, 23, and 24). The simulation parameters were varied to determine the optimal NaOCH3 synthetic conditions under different schemes with 0.01 wt% water content, maximum 45 wt% NaOCH3, and the lowest total energy consumption. The results showed that scheme C had the lowest total energy consumption (34.25 GJ/h) under the optimal synthetic condition of 1.4 for CH3OH/NaOH feed flow ratio, 25 for the number of stages, 1550 kg/h for the bottom flow rate, and the 24th feed stage location, with the NaOCH3 flow rate of 675 kg/h. Scheme C thus holds promising potential as an energy-efficient alternative for synthesis of NaOCH3. The novelty of this research lies in the use of pervaporation membrane in place of distillation column to separate CH3OH from water and to lower energy consumption and capital cost.


2021 ◽  
Vol 11 (24) ◽  
pp. 11923
Author(s):  
Fábio Luiz da Costa Carrir ◽  
Cesare Biserni ◽  
Danilo Barreto Aguiar ◽  
Elizaldo Domingues dos Santos ◽  
Ivoni Carlos Acunha Júnior

The growing global demand for energy and the costly taxes on electric energy demonstrate the importance of seeking new techniques to improve energy efficiency in industrial facilities. Refrigeration units demand a large amount of electricity due to the high power needs of the components of the system. One strategy to reduce the electric energy consumption in these facilities is pressure condensation control. The objective here was to develop a logical control model where the physical quantities in the thermodynamic process can be monitored and used to determine the optimum point of the condensation pressure and the mass flow rate of the air in the evaporative condenser. The algorithm developed was validated through experiments and was posteriorly implemented in an ammonia industrial system of refrigeration over a period of sixteen months (480 days). The results showed that the operation of the evaporative condenser with a controlled air mass flow rate by logical modeling achieved a reduction of 7.5% in the consumption of electric energy, leading to a significant reduction in the operational cost of the refrigeration plant.


Author(s):  
Federico Caruso ◽  
Craig Meskell

The effect of the axial gap on the energy consumption of a single-blade wastewater pump (Sulzer XFP PE-2 150E CB1.1) is assessed using unsteady Reynolds-averaged Navier–Stokes simulations with ANSYS Fluent. The numerical model was compared to experimental data with a nominal design configuration (i.e. gap size) to provide confidence in the modeling approach. The global performance of the pump was evaluated in terms of pressure-discharge, torque, and efficiency for a range of volumetric flow rates (110 m3ċh−1 to 254 m3ċh−1) and gap sizes (0.3 mm to 1.15 mm). While it is found that the power consumption at a given flow rate is reduced with increased gap, this is at the expense of a drop in outlet pressure, and hence the efficiency of the pump drops significantly. At the largest volumetric flow rate considered (254 m3ċh−1), the sensitivity of the efficiency to the gap size is −13.5%ċmm−1 and the sensitivity of the reduction in mechanical power consumption to gap size is 0.58 kWċmm−1. These results emphasize the importance of active maintenance during the lifetime of a wastewater pump to avoid a reduction in the energy performance caused by increased gap size.


2020 ◽  
pp. 57-60
Author(s):  
S. M. Petrenko ◽  
◽  
N. I. Berezovsky ◽  

Air-and-peat mixture in horizontal jet transport pipeline is considered as a compressible two-component mixture with uniform distribution of solid peat particles in continuous air phase. Such heterogeneous medium flow is substituted for a flow of interpenetrating air phase and a quasi-solid phase approximating the flow of discrete particles. Such approach makes it possible to write individual equations of continuity and motion for each phase, but it is required to introduce the forces of aerodynamic interference at the phase boundaries in the motion equations. From the analysis of the known theoretical and experimental research data on jet transport of granular materials, it is possible to identify some parameters such that variation of any of these parameters changes the jet transport energy consumption. Such parameters are: jet capacity per mass of air and solid, Qair and Qs (kg/s) or input-output characteristic of mass concentration, μ = Qs/Qair; reduced velocities of air, Vair, solid particles, Vs, and soaring, Vsn, hereinafter called the flow-rate mode parameters, as well as the size and density of solid particles and the profile of the jet pipeline route. The flow-rate mode parameters are simply registered in the jet transport tests. The numerical determination procedure of the actual operating conditions of milled peat jet transport is justified. The known experimental data on jet transport of milled and treated peat are processed. It is found that the relative sliding ratio is functionally connected with all operating conditions in horizontal jet transport. The change of any parameter or their combination induces transition to air-and-peat mixture flow with various relative sliding of air and solid phases at different energy consumption of horizontal jet transport.


Sign in / Sign up

Export Citation Format

Share Document