scholarly journals Review of the Chemical Properties, Pharmacological Properties, and Development Studies of Cymbopogon sp.

2020 ◽  
Vol 11 (3) ◽  
pp. 10341-10350

Cymbopogon is a genus of aromatic plants that famed because of the essential oil production that has many benefit in industrial, daily life, or even for disease treatment. The Cymbopogon genus consists of about 180 plants, including different species, subspecies, varieties, and subvarieties. The aim of this review is to present chemical properties, pharmacological, and development of the Cymbopogon genus from books and research studies. There were many types of research that have been done to prove the benefits of the Cymbopogon genus, including studies about the extract, essential oil, the chemical compound biological activity, and development studies. Some pharmacological studies that have been confirmed are regarding the pharmacological effects of Cymbopogon in the central nervous system, anti-inflammatory, antimicrobial, antioxidant, and anticancer activity. In addition, there have been studied to improve Cymbopogon benefits.

2008 ◽  
Vol 6 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Agata Siwek ◽  
Monika Wujec ◽  
Maria Dobosz ◽  
Ewa Jagiełło-Wójtowicz ◽  
Anna Chodkowska ◽  
...  

AbstractBy the reaction of 2-methyl-furan-3-carboxylic acid hydrazide with isothiocyanates, 1-[(2-methyl-furan-3-yl)carbonyl]-4-substituted thiosemicarbazides 1 were obtained. Further cyclization with 2% NaOH led to the formation of 3-(2-methyl-furan-3-yl)-4-substituted-Δ2-1,2,4-triazoline-5-thiones 2. The pharmacological effects of 2 on the central nervous system in mice were investigated. Strong antinociceptive properties of the investigated derivatives were observed in a wide range of doses.


Planta Medica ◽  
2018 ◽  
Vol 85 (01) ◽  
pp. 48-55 ◽  
Author(s):  
Yu Lei ◽  
Peng Fu ◽  
Xie Jun ◽  
Peng Cheng

AbstractGeraniol is an acyclic isoprenoid monoterpene isolated from the essential oils of aromatic plants including Cinnamomum tenuipilum, Valeriana officinalis, and several other plants. The limited source of geraniol from plant isolation cannot fulfill the great demand from the flavor and fragrance industries, which require maximizing geraniol production through biotechnology processes. The diverse activities of geraniol suggested that geraniol could treat various diseases as a promising drug candidate. In order to evaluate the potential of geraniol applied in a clinical trial, this review aims at providing a comprehensive summary of the pharmacological effects of geraniol. The publications retrieved from PubMed, ScienceDirect, Springer, and Wiley databases were collected and summarized for the last 6 years. Then, the potential application of geraniol as a drug is discussed based on its pharmacological properties, including antitumor, anti-inflammatory, antioxidative, and antimicrobial activities, and hepatoprotective, cardioprotective, and neuroprotective effects. Hence, this review aims at providing evidence of the pharmacological activities of geraniol in the context of further development as a drug candidate in clinical application.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Jayaraj Paulraj ◽  
Raghavan Govindarajan ◽  
Pushpangadan Palpu

Spilanthesspp. are popular, over-the-counter remedies; they are sold over the internet under various names and are widely used in traditional medicine in various cultures. This review will summarize the important reports on the ethnopharmacology, botany, phytochemistry, and pharmacological properties as described in the literature from recent years (1920 to 2013).Spilanthesspp. are used for more than 60 types of disorders. They are reported to contain a number of biologically active phytochemicals, although a large number of ethnopharmacological uses have been documented; only a few of these species have been investigated for their chemical and biological activities. The studies are carried out mainly onSpilanthesextracts and a few metabolites substantiate the uses of these plants in traditional medicine. Well-conducted pharmacological studies are still needed for several traditional indications, and the mechanisms of action by which the plant extracts and the active compounds exert their pharmacological effects remain to be studied. They are predominantly used as extracts in personal care products, traditional medicines, and the pharmaceutical and culinary areas. Suggestions are made regarding some of the possible mechanisms of action as to how the known compounds may exert their biological activity.


2018 ◽  
Vol 24 (17) ◽  
pp. 1839-1844 ◽  
Author(s):  
Ahmad Tarmizi Che Has ◽  
Mary Chebib

GABAA receptors are members of the Cys-loop family of ligand-gated ion channels which mediate most inhibitory neurotransmission in the central nervous system. These receptors are pentameric assemblies of individual subunits, including α1-6, β1-3, γ1-3, δ, ε, π, θ and ρ1-3. The majority of receptors are comprised of α, β and γ or δ subunits. Depending on the subunit composition, the receptors are located in either the synapses or extrasynaptic regions. The most abundant receptors are α1βγ2 receptors, which are activated and modulated by a variety of pharmacologically and clinically unrelated agents such as benzodiazepines, barbiturates, anaesthetics and neurosteroids, all of which bind at distinct binding sites located within the receptor complex. However, compared to αβγ, the binary αβ receptors lack a benzodiazepine α-γ2 interface. In pentameric αβ receptors, the third subunit is replaced with either an α1 or a β3 subunit leading to two distinct receptors that differ in subunit stoichiometry, 2α:3β or 3α:2β. The consequence of this is that 3α:2β receptors contain an α-α interface whereas 2α:3β receptors contain a β-β interface. Apart from the replacement of γ by α1 or β3 in binary receptors, the incorporation of ε subunit into GABAA receptors might be more complicated. As the ε subunit is not only capable of substituting the γ subunit, but also replacing the α/β subunits, receptors with altered stoichiometry and different pharmacological properties are produced. The different subunit arrangement of the receptors potentially constructs novel binding sites which may become new targets of the current or new drugs.


2020 ◽  
Vol 24 (9) ◽  
pp. 909-1009
Author(s):  
Maryam Akaberi ◽  
Zahra Tayarani-Najaran ◽  
Iraj Mehregan ◽  
Javad Asili ◽  
Amirhossein Sahebkar ◽  
...  

One of the most important families of Iranian flora is Apiaceae (Umbelliferae). Most of the species of this family are aromatic plants and rich in essential oils with diverse structures. In the present review, the essential oil composition of 63 genera comprising 141 Apiaceae (66.4% native 33.6% endemic) is summarized.


Sign in / Sign up

Export Citation Format

Share Document