scholarly journals Layered Double Hydroxide Nanomaterial as Highly Efficient Adsorbent and its Recycling after Removal of a Carcinogenic Tartrazine Dye from Wastewater

2021 ◽  
Vol 12 (6) ◽  
pp. 7725-7740

In this work, the tartrazine dye is removed from the wastewater by the layered double hydroxide (LDH) [Zn2-Al-Cl]. LDH materials have proven to be highly effective in removing pollutants, with a low cost of synthesis, non-toxic, and they do not regenerate the sludge. Several parameters were studied, the retention of dye by LDH nanomaterial is optimized for a pH between 6 and 8, the equilibrium retention is obtained after 24 hours, and retention kinetics follows the pseudo-second-order model. The isotherms are the H type, and they follow the Langmuir model, retention capacity reaches 100% for a mass ratio (adsorbate/adsorbent) between 0.1 and 0.5, and the maximum amount retained of the dye is 740.35 mg/g for an initial concentration of tartrazine was 1200 mg/L and 100 mg of mass of LDH. X-ray diffraction (XRD) showed that the synthesized matrix is crystallized in a lamellar structure. Two processes affect the removal of the dye, adsorption of the surface of LDH, and intercalation between the layers. Infrared analysis indicated the appearance of the band's dye in the spectrum of the matrix after retention. Moreover, scanning electron microscopy showed the lamellar character of the two phases obtained before and after retention. The thermodynamics study showed that the process is endothermic, and the adsorption mechanism is governed by physisorption. The LDH nanomaterial is a good adsorbent with low cost, high efficiency, and recyclable.

CrystEngComm ◽  
2021 ◽  
Author(s):  
Huafeng Shi ◽  
Kun Yang ◽  
Fangfang Wang ◽  
Yonghong Ni ◽  
Muheng Zhai

It is of great importance to construct non-precious metal bifunctional electrocatalysts with low cost and high efficiency for overall water splitting.


2021 ◽  
Author(s):  
Rehab K. Mahmoud ◽  
Mohamed Taha ◽  
Amal Zaher ◽  
Rafat M. Amin

Abstract Background: In the current work, the removal of cationic and anionic dyes from water was studied both experimentally and computationally. We examine the selectivity of the adsorbent, Zn–Fe layered double hydroxide (LDH) toward three cationic and anionic dyes. Methods: The chemical and physical properties of the prepared adsorbent before and after adsorption were investigated using FT-IR, X-ray diffraction, zeta potential, energy dispersive X-ray, X-ray photoelectron spectroscopy, particle size, HRTEM, and FESEM analysis; optical and electric properties were estimated. The influence of pH on the adsorption process was estimated. Monte Carlo simulations were performed to understand the adsorption mechanism and compute the adsorption energies.Significant Findings: Single dye adsorption tests revealed that Zn–Fe LDH effectively takes up anionic methyl orange (MO) more than the cationic dyes methylene blue (MB) and malachite green (MG). From MO/MB/MG mixture experiments, LDH selectively adsorbed in the following order: MO>MB>MG. The adsorption capacity of a single dye solution was 230.68, 133.29, and 57.34 mg/g for MO, MB, and MG, respectively; for the ternary solution, the adsorption capacity was 217.97, 93.122, and 49.57 mg/g for MO, MB, and MG, respectively. Zn–Fe LDH was also used as a photocatalyst, giving 92.2% and 84.7% degradation at concentrations of 10 and 20 mg/L, respectively.


Author(s):  
Zhengwei Lin ◽  
Qinghong Zhang ◽  
Gongliang Wang ◽  
Jie Mao ◽  
Martin Hoch ◽  
...  

ABSTRACT Moisture crosslinking of polyolefins has attracted increasing attention because of its high efficiency, low cost, and easy processing. However, the crucial shortcoming of moisture crosslinking is that the side reaction of peroxide scorch (precrosslinking) simultaneously occurs in silane grafting. It has been recognized that making peroxide precrosslinking useful is an effective way to broaden the application of moisture crosslinking. A novel foaming process combined with moisture crosslinking is proposed. The matrix of ethylene–propylene–diene terpolymer grafted with silane vinyl triethoxysilane (EPDM-g-VTES) was prepared by melt grafting, with dicumyl peroxide as initiator. Foaming was then carried out with azodicarbonamide (AC) as the blowing agent by making use of precrosslinking. Subsequently, the EPDM-g-VTES foams were immersed in a water bath to achieve moisture crosslinking with dibutyl tin dilaurate as the catalyst. The results showed that VTES was grafted onto EPDM and the EPDM-g-VTES foams were successfully crosslinked by moisture. The EPDM-g-VTES compounds with AC obtained great cells by compression molding with the help of precrosslinking. The mechanical property of the EPDM-g-VTES foam was improved by moisture crosslinking. The moisture-cured foam with 4 wt% AC had an expansion ratio of about three times, which could bear large deformation and showed a high energy-absorption effect.


2013 ◽  
Vol 591 ◽  
pp. 138-141
Author(s):  
Zhi Dong Han ◽  
Xin Ke Zhang ◽  
Yue Wang ◽  
Zheng Quan Jiang ◽  
Peng Wang

Mg-Al layered double hydroxide (LDH) was modified with sodium dodecyl sulfate (SDS) by regeneration method. The structure of modified LDH (SDS-LDH) was investigated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The composites of SDS-LDH and polyethylene (PE) were prepared by melt blending and solution mixing method with maleated PE (PEgMA) as compatibilizer. The structure of the composites and the dispersion of SDS-LDH in the matrix were investigated by XRD and transmission electron microscopy (TEM), respectively. The results reveal that SDS was successfully intercalated into the interlayer space of LDH. SDS-LDH was hardly exfoliated in PE/PEgMA by melt blending. The nanocomposites of PE/(PEgMA/SDS-LDH) were successfully prepared by melt blending PE with SDS-LDH/PEgMA master-batch obtained by solution mixing. Homogeneous dispersion of SDS-LDH in the matrix was observed by TEM.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1786 ◽  
Author(s):  
Liangjun Xia ◽  
Chen Li ◽  
Sijie Zhou ◽  
Zhuan Fu ◽  
Yun Wang ◽  
...  

As a natural polymer, leather and its associated industries are known to be the leading economic sector in many countries. However, the huge amounts of leather waste generated from the leather industry causes severe environmental pollution. Herein, cow leather (CL) powders were prepared using a homemade machine and used as a low-cost adsorbent for the effective removal of reactive dyes from wastewater. The as-prepared CL powders exhibited dot-like, rod-like, and fiber-like morphologies. A Fourier transform infrared analysis and an x-ray diffraction analysis demonstrated that the CL powders retained the main structure of the protein contained in it. In addition, an improvement in thermal stability was also observed for the CL powders. Dye adsorption experiments indicate that the CL powders showed the highly effective removal of C.I. Reactive Red 120 (RR120), C.I. Reactive Yellow 127 (RY127), and C.I. Reactive Blue 222 (RB222) with the adsorption capacity of 167.0, 178.9, and 129.6 mg·g−1, respectively. The Langmuir, pseudo-second order, and intraparticle diffusion models could well depict the adsorption equilibrium and kinetics of CL powders toward the investigated reactive dyes. The as-prepared CL powders can be used as a potential adsorbent in the treatment of dye contaminated wastewater. Future studies will mainly focus on the application of the adsorbed CL powders for the pigment printing of textile materials.


2019 ◽  
Vol 27 (5) ◽  
pp. 287-298
Author(s):  
Xincheng Guo ◽  
Mengqi Tang ◽  
Na Wang ◽  
Lingtong Li ◽  
Yifan Wu ◽  
...  

Organically modified layered double hydroxide (OM-LDH) was synthesized via anion exchange reaction and potassium monolauryl phosphate (MAPK) was used as an intercalator. The OM-LDH nanofillers were embedded into low-density polyethylene/ethylene–vinyl acetate (LDPE/EVA) via melt blending process which provided LDPE/EVA/OM-LDH nanocomposites. The structure and properties of the fabricated samples were characterized through Fourier transform infrared spectroscopy, X-ray diffraction techniques, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and tensile testing. The results showed that the organic anion was intercalated into the interlayer region of LDH and enlarged the interlayer distance. The TGA results of the nanocomposites showed significantly improved thermal stability at a higher temperature when containing 6 wt% OM-LDH due to the good dispersion of OM-LDH in the matrix. The DSC data indicated that the degree of crystallinity was increased obviously due to the incorporation of OM-LDH in the matrix. The formation of organic side chains on the OM-LDH surface also contributed to an improvement in the interfacial adhesion, resulting in enhanced tensile strength and elongation at break compared with LDH.


2019 ◽  
Vol 136 (34) ◽  
pp. 47884 ◽  
Author(s):  
Cataldo Simari ◽  
Carmelo Lo Vecchio ◽  
Apostolos Enotiadis ◽  
Mariano Davoli ◽  
Vincenzo Baglio ◽  
...  

2020 ◽  
Vol 9 (2) ◽  
pp. 383-391

A MgCr-based layered double hydroxide (LDH) was synthesized by a coprecipitation method, followed by an intercalation process using an oxalic anion. The materials were characterized using X-ray diffraction analysis, FT-IR spectroscopy, and pH pzc measurement. The materials were then applied as adsorbents for removal of methylene blue (MB) and rhodamine B (RhB) from aqueous solution. Pristine Mg/Cr LDH exhibited RhB adsorption capacity of 32.154 mg g⁻1, whereas the use of intercalated Mg/Cr LDH caused an increase in the capacity (139.526 mg g⁻1). Kinetic studies indicated that the dye adsorption using both LDHs followed a pseudo-second-order kinetic model; the K2 values of pristine and modified Mg/Cr LDH for RhB and MB were 6.970, 0.001, 0.426, and 2.056 g mg⁻1 min⁻1, respectively. The thermodynamic study identified that the adsorption of both dyes onto the LDHs was a spontaneous process and can be classified as physical adsorption with adsorption energies of <40 kJ/mol. Moreover, the desorption and regeneration experiments indicated the high economic feasibility and reusability of the LDHs. By using HCl as the optimal solvent, the LDHs could desorb as much as 98% of the dye and could be used as adsorbents with high adsorption capacity over three cycles.


2020 ◽  
Vol 8 ◽  
Author(s):  
Andra Tǎmaş ◽  
Ioana Cozma ◽  
Laura Cocheci ◽  
Lavinia Lupa ◽  
Gerlinde Rusu

The dye industry is one of the largest water consuming industries, and at the same time generates large quantities of wastewaters. The resulting wastewaters require proper treatment before discharge, because the dye contents have a negative effect on the water body and organisms present in it. The most efficient treatment method for water containing dyes is represented by adsorption processes. The challenge with these adsorption processes is to develop new, efficient, viable, and economic adsorbent materials. Therefore, in the present paper, the performance of Zn2Al-layered double hydroxide, prepared from an industrial waste (zinc ash) as a zinc source, was investigated in the Orange II dye adsorption process. The Zn2Al-layered double hydroxide prepared from secondary sources presents similar morphological and structural characteristics as those prepared from analytical grade reagents. The influence of initial dye concentration, adsorption time, solid:liquid ratio, pH, and temperature was evaluated in order to confirm the benefit of this waste valorization. A comparison with the reference Zn2Al-layered double hydroxide prepared from analytical grade reagents was performed and the results show that due to the small presence of impurities, the material prepared from zinc ash shows better adsorption capacities (qmax,exp = 42.5 mg/g at 293 K) than the material prepared from reagents (qmax,exp = 36.9 mg/g at 293 K), justifying the utilization of secondary sources for layered double hydroxides preparation. The proposed treatment process presents advantages from both economic and environmental protection point of view.


Sign in / Sign up

Export Citation Format

Share Document