scholarly journals Optical and Electrical Properties of Nd3+doped Na2O-ZnO-TeO2 Material

2021 ◽  
Vol 12 (6) ◽  
pp. 7927-7941

Neodymium-doped Na2O-ZnO-TeO2 (NZT) glasses were prepared by the conventional melt quenching technique. DTA and TG were used to confirm glass preparation through the glass transition temperature at 447°C for the glass system. The analysis of FTIR spectra and X-ray diffraction described the samples' nature as ionic and amorphous, respectively. The optical band gap energy was estimated using absorption spectra and found to be decreased from 2.63eV to 1.32 eV due to the increase of doping concentration. The intensity of the emission spectra was enhanced for the higher concentration of Nd3+ ions. The dielectric constant of the glass samples was found to be constant for the large range of frequency (3 kHz to 1 MHz). The variation of conductivity with the temperature of the samples had shown the Arrhenius mechanism of conduction.

2012 ◽  
Vol 545 ◽  
pp. 161-164
Author(s):  
Rusdi Roshidah ◽  
Abd Rahman Azilah ◽  
Norlida Kamarulzaman

ZnO is known as an inorganic material that has a variety of morphologies. The morphologies of the ZnO are much influenced by the synthesis route. In this work, two ZnO nanomaterials were prepared by the sol-gel route and the effect of detergent on the morphology and optical band gap of ZnO materials were investigated. The synthesized ZnO materials were characterized using Simultaneous Thermogravimetric Analyzer (STA), X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The UV-Vis spectrophotometer is used to determine the optical band gap. The results show that the presence of detergent affected the morphology of the ZnO from nanorods to nano-flakes. The band gap energy of the ZnO were also reduced from 3.14 ev to 2.98 eV from the nanorod to the nanoflakes.


2021 ◽  
Vol 317 ◽  
pp. 95-99
Author(s):  
Muhammad Noorazlan Abd Azis ◽  
Halimah Mohamed Kamari ◽  
Suriani Abu Bakar ◽  
Azlina Yahya ◽  
Umar Saad Aliyu

Borotellurite glass had been widely applied in the field of optical communications and devices. In this work, holmium oxides doped borotellurite glass had been successfully fabricated via conventional melt-quenched technique. The structural properties of holmium doped tellurite glass were found using x-ray diffraction (XRD) method. The nonexistence of sharp peaks in XRD pattern shows that the inclusion of holmium tellurite glass leads to the formation long range of disorderness. The optical properties of the glass system such as refractive index and optical band gap energy are investigated using UV-Vis spectrophotometer. The value of refractive index is found in nonlinear trend along with holmium oxides concentration. It is found that the refractive index is more than 2 at 0.01, 0.03 and 0.04 of holmium concentrations. The optical band gap energy was found in similar trend with refractive index which is in nonlinear pattern.


2015 ◽  
Vol 9 (3) ◽  
pp. 169-173 ◽  
Author(s):  
Yahia Elbashar

Homogeneous glass samples with different compositions 42(P2O5)?40 (ZnO)?(16?x)(K2O)?2 (Bi2O3)?x(Cu2O) (where x = 1, 2 and 3mol%) were prepared by conventional melt-quenched technique under controlled conditions. The structure of the prepared glass samples was investigated by X-ray diffraction. Optical properties (transmittance and reflectance) of the glasses were measured in the wavelength range 200-900 nm. The optical band gap energy of the investigated glasses with 1, 2 and 3mol% Cu2O was estimated from absorption data using the Mott and Davis relation and found to be 2.33, 2.45 and 2.53 eV, respectively. The mechanism of optical absorption was found to be direct. The band tail width was also estimated and found to lay in the acceptable range. Refractive index, absorption coefficient, extinction coefficient and real/imaginary parts of dielectric constants were calculated. Further to this, some theoretical investigation of the spectral problems was carried out. The investigation was based on finite difference method.


2010 ◽  
Vol 25 (1) ◽  
pp. 189-196 ◽  
Author(s):  
Hulya Metin ◽  
Mehmet Ari ◽  
Selma Erat ◽  
Semra Durmuş ◽  
Mehmet Bozoklu ◽  
...  

Cadmium sulfide (CdS) photocatalyst films were grown on glass by chemical bath deposition (pH 9.4, 70 °C) and then annealed in nitrogen from 423 K to 823 K in steps of 100 K. The XRD crystallite size increases in a sigmoidal manner from 60 nm to 100 nm while the optical band gap energy decreases from 2.42 eV to 2.28 eV. This trend is paralleled by the decreasing Urbach energy, but only up to 623 K, where it increases again. This is the temperature where the Cd effectively surpasses the phase transformation from cubic to hexagonal, and the activation energy for electronic transport drops by a factor of nearly two.


2012 ◽  
Vol 610-613 ◽  
pp. 319-322
Author(s):  
Xue Feng Bai ◽  
Xian Da Li

A series of CdxZn1-xS (x=0.1~0.9) composite photocatalysts were prepared by coprecipitation method. The above-prepared photocatalysts were characterized by X-ray diffraction (XRD), UV-Vis diffusive reflectance spectroscopy (DRS),surface photovoltage spectroscopy (SPS). It was shown from XRD that CdxZn1-xS solid solution semiconductors were of hexagonal phase in agreement with pure CdS. The DRS and SPS results showed that the band gap energy gradually reduced with the increasing of x value in CdxZn1-xS, and when x = 0.7, the Cd0.7Zn0.3S photocatalyst had the strongest surface photovoltage. It was found from photocatalytic reduction of CO2 that the highest HCOOH production rate of 342.64 μmol/(g•h) over Cd0.7Zn0.3S photocatalyst among a series of CdxZn1-xS photocatalysts were obtained under 250 W high pressure mercury lamp.


2017 ◽  
Vol 889 ◽  
pp. 234-238
Author(s):  
Mohd Hasmizam Razali ◽  
Nur Arifah Ismail ◽  
Mahani Yusoff

Pure and F doped TiO2 nanotubes was synthesized using simple hydrothermal method. The hydrothermal was conducted using teflon-liner autoclave and maintained at 150oC for 24 hours. The characterization of synthesised product was carried out using x-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive of x-ray spectroscopy (EDX) and ultra violet – visible light diffuse reflectance spectroscopy (UV-Vis DRS) for band gap measurements. XRD patterns indicated that anatase TiO2 phase was remained after F doping suggested that fluorine was highly dispersed into TiO2 by substituted with O in the TiO2 lattice to formed TiO2-xFx solid solution. Morphology investigation using TEM found out small diameter of nanotubes structure within 8 – 10 nm of pure and F doped TiO2 nanotubes. The band gap energy (Eg) of both nanotubes samples were almost similar proposing that F doping does not modify the band gap energy.


2011 ◽  
Vol 110-116 ◽  
pp. 1406-1410
Author(s):  
Hai Yi Li ◽  
Yan Lai Wang ◽  
Shi Liang Ban ◽  
Yi Min Wang

CdS thin films deposited on glass substrate are prepared by chemical bath deposition using the reaction between CdSO4 and CS (NH2)2. The composition, surface morphology and structural properties of as-deposited and annealed CdS thin films were studied using scanning electron microscopy (SEM), X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) techniques. The results indicate that the dense, homogeneous polycrystalline CdS thin films with smooth surface can be obtained by chemical bath deposition. The CdS thin films have cubic structure and the ratio of S and Cd is 1:1 in CdS thin films. Optical properties of CdS films were measured with ultraviolet-visible spectrophotometer. The optical band gap energy (Eg) of film sample was found to be 2.31 eV.


Author(s):  
Anuar Kassim ◽  
Tan Wee Tee ◽  
Ho Soon Min ◽  
Shanthi Monohorn ◽  
Saravanan Nagalingam

PbSe thin films are prepared by chemical bath deposition technique over microscope glass substrates from an aqueous acidic bath containing lead nitrate and sodium selenate. The influence of bath temperature on the properties of PbSe film is investigated. The X-ray diffraction analysis showed the deposited films were polycrystalline and having the (111) orientation. The surface morphology study revealed that the grains have cubic shape crystal. The band gap energy was decreased from 2.0 to 1.3 eV as the bath temperature was increased from 40 to 80°C. The films deposited at 80°C showed good crystallinity and uniformly distributed over the surface of substrate with larger grain sizes. Therefore, the optimum bath temperature is 80°C. Keywords: Lead selenide; X-ray diffraction; Band gap energy; Chemical bath deposition; Thin films DOI: 10.3126/kuset.v6i2.4021Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.126-132


2015 ◽  
Vol 11 (3) ◽  
pp. 3190-3197
Author(s):  
H. A. Saudi

Zinc barium borate glasses with composition (65-x) B2O3-10Na2O-10Al2O3-10ZnO-5Li2O-xBaO with (0 ≤ x ≤40 % mol)have been prepared using melt quenching technique.The density, molar volume and the optical absorption studies revealed that the optical band gap energy (Eopt) and Urbachenergy increase with the increase of BaOcontent.This is mainly due to the increased polarization of theBa2+ ions and theenhanced formation of non-bridging oxygen (NBO). The IR studies indicate that these glasses are made up of [AlO6],[BO3],[BO4], and [AlO4] basic structural units.


Sign in / Sign up

Export Citation Format

Share Document