Features of the organization of diagnostic maintenance of equipment and pipelines of oil and gas productions operated in difficult engineering and geological conditions

Author(s):  
I.A. Gol’dzon ◽  
◽  
A.P. Zav’yalov ◽  
Author(s):  
Lyubov K. Altunina ◽  
◽  
Vladimir P. Burkov ◽  
Petr V. Burkov ◽  
Vitaly Y. Dudnikov ◽  
...  

In the Russian Arctic, a soil cryostructuring technique (i.e. strengthening of soil horizons with cryogel-based composite materials with no excavation of unstable soils required) seems to be showing promise. Experiments have proven that mechanical and thermal insulation properties attributed to cryogels make them appropriate for use in strengthening and thermally insulating the soil, while their structure makes it possible to form a stable vegetation cover. Field experiments have confirmed that cryostructuring efficiently strengthens the soil layer with cryogels stimulating soil microflora. An experience of using cryotropic compositions in the oil and gas sector was described. Notably, cryogels can be used to strengthen unstable soil foundations of trunk pipelines, as well as to bind soil (e.g. on slopes). In addition, cryogels are advised for use in engineering protection to prevent the uneven settlement of a trench base and its creep: thus, cryogels are pumped into the soil of the trench bottom base to create a support system representing a spatial lattice. After the first freeze and thaw cycle, cryotropic material is formed and then increases its strength and elasticity with each new cycle. More broadly, opportunities have been considered regarding cryogels used in various engineering and geological conditions, while taking into account the outcomes of landscape and territorial analysis. It was concluded that cryogel-based composite materials are a promising innovative scientific field expanding technological capabilities for developing and using spaces and resources in the Russian Arctic.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3251
Author(s):  
Tomasz Sliwa ◽  
Aneta Sapińska-Śliwa ◽  
Andrzej Gonet ◽  
Tomasz Kowalski ◽  
Anna Sojczyńska

Geothermal energy can be useful after extraction from geothermal wells, borehole heat exchangers and/or natural sources. Types of geothermal boreholes are geothermal wells (for geothermal water production and injection) and borehole heat exchangers (for heat exchange with the ground without mass transfer). The purpose of geothermal production wells is to harvest the geothermal water present in the aquifer. They often involve a pumping chamber. Geothermal injection wells are used for injecting back the produced geothermal water into the aquifer, having harvested the energy contained within. The paper presents the parameters of geothermal boreholes in Poland (geothermal wells and borehole heat exchangers). The definitions of geothermal boreholes, geothermal wells and borehole heat exchangers were ordered. The dates of construction, depth, purposes, spatial orientation, materials used in the construction of geothermal boreholes for casing pipes, method of water production and type of closure for the boreholes are presented. Additionally, production boreholes are presented along with their efficiency and the temperature of produced water measured at the head. Borehole heat exchangers of different designs are presented in the paper. Only 19 boreholes were created at the Laboratory of Geoenergetics at the Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Krakow; however, it is a globally unique collection of borehole heat exchangers, each of which has a different design for identical geological conditions: heat exchanger pipe configuration, seal/filling and shank spacing are variable. Using these boreholes, the operating parameters for different designs are tested. The laboratory system is also used to provide heat and cold for two university buildings. Two coefficients, which separately characterize geothermal boreholes (wells and borehole heat exchangers) are described in the paper.


Author(s):  
Yu.R. Vladov ◽  
◽  
M.Yu. Nesterenko ◽  
Yu.M. Nesterenko ◽  
A.Yu. Vladova ◽  
...  

The predominant area of application of the developed methodology is the construction of the distribution of the geodynamic state of the developed hydrocarbon fields in oil and gas basin, and the identification of the corresponding distribution law. A number of the hydrocarbon deposits in terms of geological conditions of occurrence, structure and other parameters are geodynamically hazardous during their development. The Federal Law «On Subsurface Resources» (Article 24) requires conducting a complex of geological, surveying, and other observations sufficient for ensuring a normal technological cycle of work, and the prediction of hazardous situations. The developed methodology based on the construction of aggregated additive models for each reservoir and field is presented. It includes four sequential stages (24 operations): first — prepare geodynamic data; second — determine the geodynamic state of productive strata; third — find the geodynamic state of the developed deposits subsoil; fourth — build the distribution of the bowels geodynamic state of these fields for the entire oil and gas basin and identify the relevant distribution law. Oil and gas basin in the west of the Orenburg Region (Volga — Ural and Caspian oil and gas provinces) is considered as an example of implementation. Unique data of twenty geodynamic parameters of 320 productive strata (56 fields) were used. It is revealed that in accordance with the Pearson criterion, the theoretical data with a high confidence probability (95 %) correspond to the law of normal distribution. Developed methodology has significant technical and economic advantages, since it allows to identify the geodynamic state of productive strata and subsoil of the fields being developed, to identify hazardous geodynamic processes and to choose rational modes for the development of hydrocarbon deposits.


2021 ◽  
Vol 325 ◽  
pp. 47-52
Author(s):  
Fedor L. Kapustin ◽  
N.N. Bashkatov ◽  
Rudolf Hela

When constructing deep wells for oil and gas production in difficult geological conditions, special lightweight oil-well cements are used. To reduce the density and water separation of the cement slurry as well as to increase the strength, corrosion resistance of cement stone and the quality of well cementing, opal-containing rocks, fly ash, microsphere and other lightening additives are introduced into the cement composition. The influence of sedimentary rocks, such as opoka, tripoli, and diatomite containing from 43 to 81% amorphous silica on the grindability, rheological and physical-mechanical properties of lightweight oil-well Portland cement has been studied. The twelve cement compositions with different content of additives (from 30 to 45%) that meet the requirements of the standard for density, spreadability, water separation, thickening time and flexural strength were selected. The introduction of 45% diatomite or tripoli significantly reduces the duration of cement grinding, provides the cement slurry with water-cement ratio of 0.9 with better density and flexural strength, respectively, 1480 kg/m3 and 1.1–1.5 MPa.


2021 ◽  
Vol 73 (05) ◽  
pp. 68-69
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202439, “Pushing Malaysia’s Drilling Industry Into a New Frontier: How a Distinctive Wellhead Design Enabled Implementation of a Fully Offline Well Cementing Resulting in a Significant Shift in Operational Efficiency,” by Fauzi Abbas and Azrynizam M. Nor, Vestigo, and Daryl Chang, Cameron, a Schlumberger Company, prepared for the 2020 SPE Asia Pacific Oil and Gas Conference and Exhibition, originally scheduled to be held in Perth, Australia, 20–22 October. The paper has not been peer reviewed. Traditionally, rigs are positioned over a well from the moment the surface casing is drilled until the installation of the wellhead tree. This results in the loss of precious time as the rig idles during online cementing. However, in mature Field A offshore Terengganu, Malaysia, a new approach eliminated such inefficiency dramatically. Operational Planning With oil production in Field A initiated in October 2015, historical data on well lithology, formation pressure, and potential issues during drilling were available and were studied to ensure that wells would not experience lost circulation. This preplanning is crucial to ensure that the offline cementing activity meets the operator’s barrier requirements. Petronas Procedures and Guidelines for Upstream Activities (PPGUA 4.0) was used for the development of five subject wells in Field A. In this standard, two well barriers are required during all well activities, including for suspended wells, to prevent uncontrolled outflow from the well to the external environment. For Field A, two barrier types, mechanical and fluid, allowed by PPGUA 4.0 were selected to complement the field’s geological conditions. As defined in PPGUA 4.0, the fluid barrier is the hydrostatic column pressure, which exceeds the flow zone pore pressure, while the mechanical barrier is an element that achieves sealing in the wellbore, such as plugs. The fluid barrier was used because the wells in Field A were not known to have circulation losses. For the development of Field A, the selected rig featured a light-duty crane to assist with equipment spotting on the platform. Once barriers and rig selection are finalized, planning out the drill sequence for rig skidding is imperative. Space required by drillers, cementers, and equipment are among the considerations that affect rig-skid sequence, as well as the necessity of increased manpower. Offline Cementing Equipment and Application In Field A, the casing program was 9⅝×7×3½ in. with a slimhole well design. The wellhead used was a monobore wellhead system with quick connectors. The standard 11-in. nominal wellhead design was used for the wells with no modifications required. All three sections of the casing program were offline cemented. They were the 9⅝-in. surface casing, 7-in. production casing, and 3½-in. tubing. The 9⅝-in. surface casing is threaded to the wellhead housing and was run and landed with the last casing joint. Subsequent wellhead 7-in. casing hangers and a 3½-in. tubing hanger then were run and landed into the compact housing.


2021 ◽  
Vol 13 (4) ◽  
Author(s):  
Dmitry Glukhikh ◽  
Igor Glukhikh

Currently, companies are consuming transitions to the development of the difficult oil and gas fields. The difficulty implies factors: features of geological conditions, remote geographic location, features of the relief. The development of new oil and gas fields requires design approaches that ensure maximum profitability on complex assets. One of the promising development options is the digitalization and automation of design processes. The paper proposes a new approach to assessing capital costs when designing well pads in the field. A new method is proposed for calculating costs and restrictions at the stage of resources for optimizing a well pad, taking into account detailed topography and resource availability through digitalization and automation. The problem was solved using an interactive ontological model with built-in knowledge bases and calculation algorithms. The model was tested at the field, the possible risks of using the model were assessed, and sufficient accuracy of the obtained values was obtained. The results of the work make it possible to improve the stage of optimization of the well pad, taking into account the costs of resources: drilling, engineering preparation, backfilling of the road, supply of communications, availability of resources and unforeseen costs. The work supports the trends of digitalization and technological processes and business processes. The developed model made it possible to digitize the stage of optimizing the location of the well pad, to automate the multifactor calculation of costs and restrictions. The results make the possible full automation for definition well pad placement, later on, taking into account detailed topography and resource availability.


Author(s):  
Chao Tian ◽  
Xinyun Ni ◽  
Jun Ding ◽  
Peng Yang ◽  
Yousheng Wu

In order to explore the fishery, oil and gas, and tourism resources in the ocean, Very Large Floating Structures (VLFS) can be deployed near islands and reefs as a logistic base with various functions such as a floating harbor, accommodation, fishery processing, oil and gas exploration, environment surveillance, airplane landing and taking off, etc. However, in addition to the complicated hydroelastic coupling effects between the hydrodynamic loads and structural dynamic responses, when tackling the hydroelastic problems of floating structures deployed near islands and reefs, several other environmental effects and numerical techniques should be taken into account: 1) The influences of the non-uniform incident waves (multi-directions, different wave frequencies); 2) Complex seabed profile and its impact on the incident waves; 3) Nonlinear second order wave exciting forces in the complex mooring system, shallow water and coral reef geological conditions; 4) Parallel computing technology and fast solving methods for the large scale linear equations, accounting for the influence of dramatic increase of number of meshes to the computation efforts and efficiency. In the present paper the theoretical investigation on the hydroelastic responses of VLFS deployed near islands and reefs has been presented. In addition, based on the pulsating source Green function, the high performance parallel fast computing techniques and other numerical methods, in solving large scale linear equations, have been introduced in the three-dimensional hydroelastic analysis package THAFTS. The motions, wave loads, distortions and stresses can be calculated using the present theoretical model and the results can be used in the design and safety assessment of VLFS.


2020 ◽  
Vol 164 ◽  
pp. 01021
Author(s):  
Nadezhda Korvet ◽  
Maria Zavodchikova ◽  
Marina Lazdovskaya

The engineering and geotechnical conditions of the site of the helium plant in the Orenburg region are characterized. The possibility of its technogenic pollution has been identified by the results of literary and stock sources, as well as by engineering and geological surveys. The reason for the formation of pollution sites is substantiated. This fact is confirmed by analyzes of assessing the composition of groundwater and the physicomechanical properties of loess soils that make up the upper part of the geological section. Groundwater is characterized by increased mineralization, which is mainly caused by the high content of sulfates, chlorides, magnesium and calcium. Also, there is an increased content of ammonia, the smell of gasoline. Studies of the soil properties showed that it almost lost subsidence properties, with the exception of isolated cases. The subsidence of individual soil samples taken from a depth of 13.0-20.0 m is inexplicable by natural causes due to the impossibility of steeping them, taking into account the hydrogeological conditions of the site. It indicates an irreversible effect of leaks of chemical reagents on the soil. The established engineering and geological features of soils and their behavior along the depth of the section are confirmed by test results presented in the form of tables and graphs. The presented information is of great practical and scientific importance for predicting changes in the characteristics of the geological environment during technogenic pollution at oil and gas facilities. The feasibility of amending regulatory documents for a detailed study of this problem in accordance with existing recommendations and scientific developments is proposed.


2020 ◽  
Vol 244 ◽  
pp. 418-427
Author(s):  
Ramiz Gasumov ◽  
Eldar Gasumov ◽  
Yulia Minchenko

The paper considers the features of the underground storages (US) construction in depleted oil and gas condensate fields (DOGCFs). The requirements for the structure of the formation, corresponding to the parameters of the object for possible US creation are presented. The influence of geological, hydrogeological, mining and technical rock formation conditions on the reliability and tightness of underground storages, including underground gas storages, has been evaluated. The necessary conditions for the US design are analyzed at the example of the Ach-Su oil and gas condensate field, in the presence of a well-explored trap with acceptable parameters for the construction of an underground storage. An important aspect is the geological conditions that meet the criteria for selecting the object: the required structure, the absence of fracturing faults, high reservoir properties of the formation, a sufficient volume of the deposit for the storage. Geological conditions lay the basis for determining the individual characteristics of the US construction technology at each DOGCF. The refined results for the current gas-saturated pore volume and the rate of pressure drop in the formation are presented, which makes it possible to select improved technological indicators in the course of  operation of the created US. In order to select the optimal option for the design and construction of the US, the results of economic and geological scenarios analysis were studied concurrently with the capabilities of the technological operation of the object and transport system, which can ensure the maximum daily production of the storage.


Sign in / Sign up

Export Citation Format

Share Document