scholarly journals Effect of Sr-substitution on the structural and magnetoelectric properties of Ni-Zn ferrites

2020 ◽  
Vol 26 (2) ◽  
pp. 1-20
Author(s):  
SC Mazumdar ◽  
AT Trina ◽  
F Alam ◽  
MJ Miah ◽  
MNI Khan

Spinel type polycrystalline Ni0.6-xZn0.4SrxFe2O4 (x = 0.0, 0.05, 0.10, 0.15 and 0.20) ferrites are synthesized by solid state reaction method. X-ray diffraction (XRD) pattern reveals the formation of spinel structure with two secondary phases Sr2FeO4 and SrFe12O19 for higher concentration of Sr (0.15 and 0.20). An increase in lattice constant is observed with the increase of Sr content in the lattice. The density of the samples is found to decrease whereas porosity increases with the substitution of Sr2+ ions. Microstructural investigation shows that the grain size increases with the increase of Sr content. Magnetic hysteresis is investigated at room temperature. All the samples exhibit lower coercivity values indicating that the materials belong to the class of soft ferrites. The saturation magnetization is found to decrease with Sr content which is attributed to Néel’s two sub-lattice model of ferrites. The real permeability of the samples remains almost constant up to a certain frequency and then falls rapidly. Improved dielectric constant is observed in the Sr2+ substituted samples. The electrical conduction in these ferrites is explained on the basis of hopping mechanism between the Fe2+ and Fe3+ ions. Bangladesh Journal of Physics, 26(2), 1-20, December 2019

2020 ◽  
Vol 56 (2) ◽  
pp. 269-277
Author(s):  
V.E. Sokol’skii ◽  
D.V. Pruttskov ◽  
O.M. Yakovenko ◽  
V.P. Kazimirov ◽  
O.S. Roik ◽  
...  

Anorthite and gehlenite crystalline structure and short-range order of anorthite melt have been studied by X-ray diffraction in the temperature range from room temperature up to ~ 1923 K. The corresponding anorthite and gehlenite phases were identified as well as amorphous component for anorthite samples having identical shape to XRD pattern of the anorthite melt. The structure factor and the radial distribution function of atoms of the anorthite melt were calculated from the X-ray high-temperature experimental data. The partial structural parameters of the short-range order of the melt were reconstructed using Reverse Monte Carlo simulations.


2016 ◽  
Vol 10 (3) ◽  
pp. 183-188 ◽  
Author(s):  
Mohamed Afqir ◽  
Amina Tachafine ◽  
Didier Fasquelle ◽  
Mohamed Elaatmani ◽  
Jean-Claude Carru ◽  
...  

SrBi1.8Ce0.2Nb2O9 (SBCN) and SrBi1.8Ce0.2Ta2O9 (SBCT) powders were prepared via solid-state reaction method. X-ray diffraction analysis reveals that the SBCN and SBCT powders have the single phase orthorhom-bic Aurivillius structure at room temperature. The contribution of Raman scattering and FTIR spectroscopy of these samples were relatively smooth and resemble each other. The calcined powders were uniaxially pressed and sintered at 1250?C for 8 h to obtaine dense ceramics. Dielectric constant, loss tangent and AC conductivity of the sintered Ce-doped SrBi2Nb2O9 and SrBi2Ta2O9 ceramics were measured by LCR meter. The Ce-doped SBN (SBCN) ceramics have a higher Curie temperature (TC) and dielectric constant at TC (380?C and ?? ~3510) compared to the Ce-doped SBT (SBCT) ceramics (330?C and ?? ~115) when measured at 100Hz. However, the Ce-doped SBT (SBCT) ceramics have lower conductivity and dielectric loss.


2020 ◽  
Vol 851 ◽  
pp. 25-31
Author(s):  
Markus Diantoro ◽  
Ahmad Al Ittikhad ◽  
Thathit Suprayogi ◽  
Nasikhudin ◽  
Joko Utomo

The development of energy storage devices encourages the sustainability of research on basic materials of supercapacitor technology. SrTiO3 is one of metal oxide called as titanate alkali metal ATiO3 (A = Ba, Sr, Ca). This material shows an excellent dielectric constant, thus expected to be potential as raw material of supercapacitor. In this work, boron was used as a dopant on the SrTiO3 system to modify its local structure and enhance the electrical properties. Synthesis SrTi1-xBxO3 was carried out using a solid-state reaction method followed by the sintering process in various molar ratio. The microstructure of SrTi1-xBxO3 compound was identified by X-ray Diffraction with Cu-Kα. XRD pattern identified the presence of SrTi1-xBxO3 phase with a slight change in the lattice parameters. I-V measurement confirmed that the electrical conductivity increased gradually up to 16.04 Ω-1cm-1. For investigating their application for electrode materials, CV was employed and it presents that the specific capacitance and energy density of x = 0.08 were 5.488 Fg-1 and 0.110 Jg-1.


2011 ◽  
Vol 324 ◽  
pp. 298-301 ◽  
Author(s):  
Roy Jean Roukos ◽  
Olivier Bidault ◽  
Julien Pansiot ◽  
Ludivine Minier ◽  
Lucien Saviot

Lead free Na0.5Bi0.5TiO3 (NBT) and (Na0.5Bi0.5TiO3)1-x(CaTiO3)x (NBT-CT) piezoelectric ceramics with the perovskite structure were studied. The NBT and NBT-CT samples were synthesized using a solid-state reaction method and characterized with X-ray diffraction (XRD), Raman spectroscopy and dielectric measurements for several compositions (x = 0, 0.07, 0.15) at room temperature. The XRD analysis showed a stabilization of a rhombohedral phase at a low concentration of Ca (0 < x <0.15), whereas Raman spectra reveal a strong modification for the sample with x = 0.15. The dielectric properties of these ceramics were studied by measuring impedance in the 79-451K temperature range for unpoled and field cooling with an electric field (FC) conditions.


2020 ◽  
Vol 990 ◽  
pp. 302-305
Author(s):  
Razif Nordin ◽  
Nadia Latiff ◽  
Rizana Yusof ◽  
Wan Izhan Nawawi ◽  
M.Z. Salihin ◽  
...  

Commercial grade ZnO were sieved into particle size of 38 to 90 μm at room temperature. X-ray diffraction (XRD) pattern confirms the hexagonal wurzite structure of ZnO microparticles. Irregular shapes of ZnO microparticles were observed by scanning electron microscope (SEM). Fourier transform infrared spectra (FTIR) confirmed the presence of Zn-O band. In addition, Uv-visible spectra (UV-Vis) were empolyed to estimate the band gap energy of ZnO microparticles.


2015 ◽  
Vol 773-774 ◽  
pp. 1096-1100 ◽  
Author(s):  
Muhammad Mubashir ◽  
Yin Fong Yeong ◽  
Lau Kok Keong ◽  
Azmi bin Mohd Shariff

In the present work, DDR3 zeolite crystals were synthesized using two different methods. The silica sources used to synthesize DDR3 crystals were tetramethoxysilane (TMOS) and Ludox-40. The resultant samples were characterized using X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The XRD results showed that the peaks representing DDR3 structure were not obtained for the sample synthesized in 5 days at room temperature with ultrasonic pre-treatment of 3h using Ludox-40 as silica source. On the other hand, the XRD pattern obtained for the sample synthesized in 25 days at 160 o C using TMOS as a silica source were similar with the XRD peaks reported in the literature. From these results, it can be concluded that the synthesis conditions of 25 days at 160 o C using TMOS as silica source were the favorable conditions in obtaining DDR3 crystal structure.


2014 ◽  
Vol 934 ◽  
pp. 71-74
Author(s):  
Lian Mao Hang ◽  
Zhao Ji Zhang ◽  
Zhi Yong Zhang

Ni-doped rod-like ZnO particles with doping concentration of 1 at.% were synthesized at 200°C by hydrothermal method and characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and superconducting quantum interference device (SQUID). The results show that the as-synthesized samples are pure hexagonal wurtzite structure without metallic Ni or other secondary phases and display rod-like shape with smooth surface. The magnetization measurements reveal that the Ni-doped rod-like ZnO particles show ferromagnetic behavior at room temperature. The saturation magnetization and coercive field are 0.0046 emu/g and 15 Oe, respectively.


2010 ◽  
Vol 663-665 ◽  
pp. 1325-1328 ◽  
Author(s):  
De Hui Sun ◽  
De Xin Sun ◽  
Yu Hao

The superparamagnetic NiFe2O4 nanoparticles were synthesized using a hydrothermal technology through P123 sphere micelles as ‘nanoreactor’ in this work. Their morphologies, structures, surface properties and magnetism were characterized by FE-SEM, XRD, FTIR, and VSM, respectively. The nickel ferrite samples are nearly spherical and homogeneous nanoparticles with average size range of about 50-120 nm. They possess superparamagnetism at room temperature and higher saturation magnetization. X-ray diffraction (XRD) pattern confirms that the samples belong to the cubic crystal system with an inverse-spinel structure. Fourier transform infrared (FTIR) absorption spectrum indicates that the NiFe2O4 nanoparticles are stabilized by the P123 adsorbed on the surface of nanoparticles.


2017 ◽  
Vol 126 (1B) ◽  
pp. 147
Author(s):  
Nguyen Thi Thuy

<p><strong>Abstract: </strong>LaFeO<sub>3</sub> system with doped Ti, Co, Cu was manufactured by solid state reaction method, it was sintered at 1250<sup>0</sup>C and 1290<sup>0</sup>C in 10 hours with a heating rate of 3<sup>0</sup>C/min. Using X-ray diffraction and Scanning Electron Microscope (SEM) to examine the structure, it reveals that samples are single-phase and orthogonal-perovskite structure describing by the Pnma space group, the unit cell volume of the samples increases when Ti, Co, Cu are doped to replace ion Fe<sup>+3</sup>. The size of particle increase while raising the temperature of sintering. Measuring the resistance which depends on temperature between the room temperature and 1000K, it can be seen that when doping Co, Cu with the nominal component La(Fe<sub>0,2</sub>Co<sub>0,2</sub>Ti<sub>0,6</sub>)O<sub>3</sub> and La(Fe<sub>0,4</sub>Cu<sub>0,1</sub>Ti<sub>0,5</sub>)O<sub>3 </sub>, the conductivity of samples increases respectively. Especially, the conductivity of Cu doped sample is higher than two other samples, and reach the highest conductivity at about 900<sup>0</sup>C, Seebeck coefficient S of La(Fe<sub>0.6</sub>Ti<sub>0.4</sub>)O<sub>3</sub> can be change from positive to negative at the temperature of around 700<sup>0</sup>C.</p>


2022 ◽  
Vol 1048 ◽  
pp. 110-120
Author(s):  
D.A. Dadhania ◽  
G.D. Jadav ◽  
S.K. Chavda ◽  
J.A. Bhalodia

The manganite systems investigated during the present work are pure La0.85Te0.15MnO3 (LTMO) and its composite with 12% concentration of Al2O3 nano powder (LTMO + Al2O3). The materials were prepared by the modified auto combustion technique. The samples were characterized by X-ray diffraction. The powder X-ray diffraction pattern of pure LTMO at room temperature shows that sample is in single phase with no detectable secondary phases and the sample have a rhombohedral structure in hexagonal with the space group R3c. The XRD pattern of LTMO + 12% Al2O3 indicates the clear presence of Al2O3 nano phase in the composite. In the present study, the FTIR Spectroscopy of both samples was carried out. It is clear from the Vibrational assignment for the value of corresponding peak position of FTIR spectra that no extra unwanted impurity is present in samples. A quantitative analysis of the energy dispersive spectroscopy (EDS) data indicates that the observed concentration of elements are very close to the calculated values from its chemical formula. R-T measurements reveals that the addition of secondary phase in manganite strongly influenced on electronic and magnetoresistance behaviour. We summarise some of the salient features of the results.


Sign in / Sign up

Export Citation Format

Share Document