Performance of B-Doped SrTiO3/ Ni Sheet for Supercapacitor Material Application

2020 ◽  
Vol 851 ◽  
pp. 25-31
Author(s):  
Markus Diantoro ◽  
Ahmad Al Ittikhad ◽  
Thathit Suprayogi ◽  
Nasikhudin ◽  
Joko Utomo

The development of energy storage devices encourages the sustainability of research on basic materials of supercapacitor technology. SrTiO3 is one of metal oxide called as titanate alkali metal ATiO3 (A = Ba, Sr, Ca). This material shows an excellent dielectric constant, thus expected to be potential as raw material of supercapacitor. In this work, boron was used as a dopant on the SrTiO3 system to modify its local structure and enhance the electrical properties. Synthesis SrTi1-xBxO3 was carried out using a solid-state reaction method followed by the sintering process in various molar ratio. The microstructure of SrTi1-xBxO3 compound was identified by X-ray Diffraction with Cu-Kα. XRD pattern identified the presence of SrTi1-xBxO3 phase with a slight change in the lattice parameters. I-V measurement confirmed that the electrical conductivity increased gradually up to 16.04 Ω-1cm-1. For investigating their application for electrode materials, CV was employed and it presents that the specific capacitance and energy density of x = 0.08 were 5.488 Fg-1 and 0.110 Jg-1.

2013 ◽  
Vol 770 ◽  
pp. 327-330
Author(s):  
Prapawan Thongsri ◽  
Tosawat Seetawan

The CaMnO3compound is synthesized by solid state reaction method. The precursor powder of calcium carbonate (CaCO3) and manganese oxide (MnO2) are mixed by ball milling then calcined at 850°C for 10 h and sintering at 1,150 °C for 36 h to obtain the calcium manganese oxide (CaMnO3) compound. The compound was doped the carbon nanotubes (CNTs) 2%, 4%, 6%, 8% and 10% by molar ratio following the calcinations and sintering process. The morphology and crystallography of the samples are analyzed by the X-ray diffraction (XRD) technique and scanning electron microscope (SEM). The Seebeck coefficient (S), electrical resistivity (ρ), thermal conductivity (κ) and dimensionless figure of merit were anlyzed. It results shown in a good thermoelectric properties after doping CNTs.


Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


2014 ◽  
Vol 979 ◽  
pp. 315-318 ◽  
Author(s):  
W. Siriprom ◽  
K. Chantarasunthon ◽  
K. Teanchai

This work aims at characterizing the thermal and physical properties of chitosan. The samples were evaluated for potentiality to use as raw material for biodegradable films raw material. Their thermal and physical properties have been also discussed in detail which Fourier Transform Infrared Spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Energy Dispersive X-Ray Fluorescence (EDXRF) and X-Ray Diffraction (XRD), respectively. The result of the XRD pattern indicated the sample has amorphous-crystalline structure and FTIR results confirmed the formation of intermolecular hydrogen bonding between the amino and hydroxyl groups of the sample. In good agreement between the EDXRF and TGA results, noticed that the removal of moisture and volatile material.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rihui Lin ◽  
He Li ◽  
Han Long ◽  
Jiating Su ◽  
Wenqin Huang

Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6008
Author(s):  
Tahira Yaqoob ◽  
Malika Rani ◽  
Arshad Mahmood ◽  
Rubia Shafique ◽  
Safia Khan ◽  
...  

MXene/Ag2CrO4 nanocomposite was synthesized effectively by means of superficial low-cost co-precipitation technique in order to inspect its capacitive storage potential for supercapacitors. MXene was etched from MAX powder and Ag2CrO4 spinel was synthesized by an easy sol-gel scheme. X-Ray diffraction (XRD) revealed an addition in inter-planar spacing from 4.7 Å to 6.2 Å while Ag2CrO4 nanoparticles diffused in form of clusters over MXene layers that had been explored by scanning electron microscopy (SEM). Energy dispersive X-Ray (EDX) demonstrated the elemental analysis. Raman spectroscopy opens the gap between bonding structure of as-synthesized nanocomposite. From photoluminence (PL) spectra the energy band gap value 3.86 eV was estimated. Electrode properties were characterized by applying electrochemical observations such as cyclic voltammetry along with electrochemical impedance spectroscopy (EIS) for understanding redox mechanism and electron transfer rate constant Kapp. Additionally, this novel work will be an assessment to analyze the capacitive behavior of electrode in different electrolytes such as in acidic of 0.1 M H2SO4 has specific capacitance Csp = 525 F/g at 10 mVs−1 and much low value in basic of 1 M KOH electrolyte. This paper reflects the novel synthesis and applications of MXene/Ag2CrO4 nanocomposite electrode fabrication in energy storage devices such as supercapacitors.


Author(s):  
Renita Manurung ◽  
Muhammad Dedi Anggreawan ◽  
Alwi Gery Agustan Siregar

In this research, the bamboo leaf shows promise as an alternative raw material for silica production. This study investigated the performance of heterogeneous catalyst prepared from silica derived bamboo leaf ash after that impregnated with phosphoric acid at ratio various. The catalyst was characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Brunauer Emmet Teller (BET) and Barrett, Joyner and Halenda (BJH) method and triacetin product analyzed by GC-MS. The optimum condition phosphoric silica catalyst was obtained at phosphoric silica molar ratio of 1:2 and employed in the acetylation of glycerol, respectively. As result, 24 % selectivity for triacetin was obtained in the presence of catalytic amount 5%, molar ratio 1:9 at 100 °C for 4 hours. Bamboo leaf derived phosphoric silica calcined showed high potential to be used as an easy to prepare and high-performance solid catalyst for industrial scale.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mutaz Salih ◽  
M. Khairy ◽  
Babiker Abdulkhair ◽  
M. G. Ghoniem ◽  
Nagwa Ibrahim ◽  
...  

Abstract In this paper, Sn-doped TiO2 nanomaterials with varying concentrations were manufactured through a simple procedure. The fabricated TiO2 and Sn loaded on TiO2 nanoparticles were studied using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-rays, Fourier transform infrared spectroscopy, and resistance analyses. The benefits of dielectric constant and ac conductivity rise at high Sn loaded concentration on TiO2 nanoparticles. The enhanced electrical conductivity is seen for STO3 (3.5% Sn doped TiO2) and STO4 (5% Sn doped TiO2) specimens are apparently associated with the introduced high defect TiO2 lattice. Furthermore, the fabricated specimens’ obtained findings may be applied as possible candidates for high-energy storage devices. Moreover, proper for the manufacture of materials working at a higher frequency.


2008 ◽  
Vol 80 (11) ◽  
pp. 2327-2343 ◽  
Author(s):  
V. Subramanian ◽  
Hongwei Zhu ◽  
Bingqing Wei

Manganese oxides have been synthesized by a variety of techniques in different nanostructures and studied for their properties as electrode materials in two different storage applications, supercapacitors (SCs) and Li-ion batteries. The composites involving carbon nanotubes (CNTs) and manganese oxides were also prepared by a simple room-temperature method and evaluated as electrode materials in the above applications. The synthesis of nanostructured manganese oxides was carried out by simple soft chemical methods without any structure directing agents or surfactants. The prepared materials were well characterized using different analytical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), surface area studies, etc. The electrochemical properties of the nanostructured manganese oxides and their composites were studied using cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopic (EIS) studies. The influence of structural/surface properties on the electrochemical performance of the synthesized manganese oxides is reviewed.


2010 ◽  
Vol 152-153 ◽  
pp. 909-914 ◽  
Author(s):  
Yun Ling Zou ◽  
Yan Li ◽  
Nan Zhang ◽  
Jian Gang Li

Flower-like CuO nanostructures have been prepared via cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method. Here, CuCl2•2H2O was used as copper raw material, and sodium hydroxide was used as precipitate. The resulting CuO powders were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). X-ray diffraction (XRD) pattern exhibited the nanocrystalline nature with monoclinic structure for the as-synthesized nanostructures. FESEM images indicated that the flower-like CuO nanostructures are composed of many interconnected nanosheets in size of several micrometers in length and width and 60-80 nm in thickness. The possible formation mechanism of flower-like CuO nanostructures was discussed.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1103 ◽  
Author(s):  
Bruna Baggio ◽  
Cristiano Vicente ◽  
Silvia Pelegrini ◽  
Cristiani Plá Cid ◽  
Iuri Brandt ◽  
...  

The compound Prussian Blue (PB), and its reduced form Prussian White (PW) are nowadays considered, in applied and fundamental research groups, as potential materials for sustainable energy storage devices. In this work, these compounds were prepared by potentiostatic electrochemical synthesis, by using different deposition voltages and thicknesses. Thick, compact and uniform layers were characterized by scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Results have shown a well-defined transition voltage for growing Prussian Blue phases and a strong dependence of the morphology/growing orientation of the samples as a function of applied potential and thickness. For the negative potential tested of −0.10 V vs. SCE, a mixture of cubic and rhombohedral phases was observed.


Sign in / Sign up

Export Citation Format

Share Document