scholarly journals Characterization and Disintegrant Potential of Phosphorylated Tiger Nut (Cyperus esculentus) Starch in Immediate Release Ibuprofen Tablet Formulation

2019 ◽  
Vol 18 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Onyinye D Onwuatuegwu ◽  
Chukwuemeka P Azubuike ◽  
Sinmisola Aloko ◽  
Modupe O Ologunagba ◽  
Cecilia I Igwilo

The study was aimed at evaluating the physicochemical properties of phosphorylated tiger nut starch (TNP) and its disintegrant properties in immediate release ibuprofen tablets. Native tiger nut starch (TNS) was modified by phosphorylation with disodium hydrogen orthophosphate at 130oC and its physicochemical properties were evaluated. Ibuprofen tablets were formulated with TNP and sodium starch glycolate (SSG) at concentrations of 5.0, 7.5, 10.0 and 15.0% as disintegrants. Phosphorylation of TNS led to improved flow properties and swelling and hydration capacities among other changes in the physicochemical properties. TNP had comparable properties with SSG. FTIR study confirmed modification and also showed that TNP is compatible with ibuprofen powder. Ibuprofen tablets produced with TNP as disintegrant had acceptable tablet properties comparable to those produced with SSG. The disintegrant potential improved with increased concentration of TNP. The results indicate that TNP has a promising disintegrant potential in tablet formulations. Dhaka Univ. J. Pharm. Sci. 18(1): 21-29, 2019 (June)

2021 ◽  
Vol 20 (1) ◽  
pp. 31-39
Author(s):  
Oluyemisi Adebowale Bamiro ◽  
Aishat Oyinkansola Salisu ◽  
Ese Mary Iyere ◽  
Olatundun Atoyegbe ◽  
Olutayo Ademola Adeleye ◽  
...  

The aim of the work was to characterize chitosan extracted from snail shell and evaluate its use as a disintegrant and binder in metronidazole tablet formulation in comparison with standard chitosan (SC). The mechanical properties were assessed using crushing strength and friability, while the release properties were assessed using disintegration and dissolution times. The extracted chitosan (EC) was crystalline in nature and the scanning electron microscopy (SEM) showed polygonal particles with rough surface. The moisture and swelling capacity was 1.80% and 15.00%, respectively. The densities and flow properties were significantly (p<0.05) higher than those of the SC. As a binder, the crushing strength of formulations containing EC was higher than SC, but both formulation failed friability test. There was significant difference between the disintegration times of the metronidazole formulations containing EC and SC as a disintegrant. The result showed that EC is more effective as a binder in tablet formulations. Dhaka Univ. J. Pharm. Sci. 20(1): 31-39, 2021 (June)


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Frank Kumah Adjei ◽  
Yaa Asantewaa Osei ◽  
Noble Kuntworbe ◽  
Kwabena Ofori-Kwakye

The disintegrant potential of native starches of five new cassava (Manihot esculenta Crantz.) varieties developed by the Crops Research Institute of Ghana (CRIG) was studied in paracetamol tablet formulations. The yield of the starches ranged from 8.0 to 26.7%. The starches were basic (pH: 8.1–9.9), with satisfactory moisture content (≤15%), swelling capacity (≥20%), ash values (<1%), flow properties, and negligible toxic metal ion content, and compatible with the drug. The tensile strength (Ts), crushing strength (Cs), and friability (Ft) of tablets containing 5–10% w/w of the cassava starches were similar (p>0.05) to those containing maize starch BP. The disintegration times of the tablets decreased with increase in concentration of the cassava starches. The tablets passed the disintegration test (DT ≤ 15 min) and exhibited faster disintegration times (p>0.05) than those containing maize starch BP. The disintegration efficiency ratio (DER) and the disintegration parameter DERc of the tablets showed that cassava starches V20, V40, and V50 had better disintegrant activity than maize starch BP. The tablets passed the dissolution test for immediate release tablets (≥70% release in 45 min) with dissolution rates similar to those containing maize starch BP.


2011 ◽  
Vol 197-198 ◽  
pp. 127-130 ◽  
Author(s):  
Vipaluk Patomchaiviwat ◽  
Piriyaprasarth Suchada ◽  
Koorattanasiri Popporn ◽  
Kanoknirumdom Supaporn ◽  
Rattanasiha Achara

The purpose of this study was to investigate the disintegrating properties of native arrowroot starch and pregelatinized arrowroot starch in comparison with corn starch and sodium starch glycolate (Explotab®). Tablets were prepared by direct compression. The tablet formulations contained dibasic calcium phosphate as filler and magnesium stearate as lubricant. Each starch at various concentrations between 2-10 % w/w was used in formulation as disintegrant. The swelling volume and weight of starches and disintegration time of tablets were evaluated. At 2% w/w concentration of starch, the pregelatinizaed starch provided disintegration time faster than the native starch (2.5 times). The disintegration time of 2% w/w pregelatinized arrowroot starch was comparable to Explotab and faster than that of native starch. The disintegration time of native starch at the concentration of 4, 6 and 10 %w/w was comparable to that of corn starch and Explotab®. Native arrowroot starch and pregelatinized arrowroot starch could be used as effective disintegrants in tablet formulation.


Author(s):  
V A. Vamshi Priya ◽  
G. Chandra Sekhara Rao ◽  
D. Srinivas Reddy ◽  
V. Prabhakar Reddy

The purpose of this study was to investigate the efficiency of superdisintegrants: sodium starch glycolate, croscarmellose sodium and crospovidone in promoting tablet disintegration and drug dissolution of Topiramate immediate release tablets. The efficiency of superdisintegrants was tested, by considering four concentrations, viz., like 2%, 3%, 4% and 5% in the formulations. The dissolution was carried out in USP apparatus II at 50 rpm with distilled water as a dissolution medium. The dissolution rate of the model drug topiramate was found highly dependent on the tablet disintegration, on the particle size of the superdisintegrant, on the solubility of the drug and also on the type of superdisintegrant in the dissolution medium. There was no effect of the diluent (Lactose monohydrate) on the disintegration of different concentrations of superdisintegrants. These results suggest that, as determined by the f2 metric (similarity factor), the dissolution profile of the formulation containing 4% sodium starch glycolate and lactose monohydrate as a diluent was similar to that of a marketed product.


Author(s):  
Natarajan R ◽  
N Patel ◽  
Rajendran N N ◽  
M Rangapriya

The main goal of this study was to develop a stable formulation of antihypertensive drugs telmisartan and hydrochlorothiazide as an immediate-release bilayer tablet and to evaluate the dissolution profile in comparison with a reference product. The formulation development work was initiated with wet granulation. Telmisartan was converted to its sodium salt by dissolving in aqueous solution of sodium hydroxide to improve solubility and drug release. Lactose monohydrate and microcrystalline cellulose were used as diluents. Starch paste is prepared in purified water and was used as the binder. Sodium starch glycolate is added as a disintegrating agent. Magnesium stearate was used as the lubricant. The prepared granules were compressed into a double-layer compression machine. The tablets thus formulated with higher proportion of sodium starch glycolate showed satisfactory physical parameters, and it was found to be stable and in vitro release studies are showed that formulation (F-T5H5) was 101.11% and 99.89% respectively. The formulation T5H5 is further selected and compared with the release profile of the innovator product, and was found to be similar (f2 factor) to that of the marketed product. The results suggest the feasibility of developing bilayer tablets consisting of telmisartan and hydrochlorothiazide for the convenience of patients with hypertension.  


2021 ◽  
Vol 16 (2) ◽  
pp. 111-117
Author(s):  
B.B. Mohammed ◽  
E.J. John ◽  
G.T. Abdulsalam ◽  
K.P. Bahago

Background: Tablets must be able to release the active drug in the gastrointestinal tract for absorption. The release profile of solid pharmaceutical dosage formulations can be quantified by assessing the disintegration and dissolution times tests. Binders are adhesives either from sugar or polymeric material that are added to tablet formulations to provide the cohesiveness required for the bonding together of the granules under compaction to form tablets.Objective: The objective of the study was to formulate and assess ibuprofen tablets using different concentrations of binders (Acacia and Gelatin).Methods: The granules were prepared using wet granulation method and analysed for flow properties based on USP/NF protocols. After granule compression, the tablets release profiles were thereafter assessed via the tablet dissolution and disintegration tests.Results: Weight variation, thickness and diameter were within the acceptable values for all batches indicative of a uniform flow. Batches with binder concentrations of 10 % and 20 % failed disintegration test due to a disintegration time above 15 min while the release rate for batches 1 and 4 was about 88 % in 60 min as against the other batches whose release rate was less than 50 % in 60 min as a result of increasing their binder concentrations.Conclusion: The study concluded that increasing the concentration of acacia and gelatin above 5% led to a decrease in percentage of drug released and an increase in disintegration time above 30 mins because 5% batches gave the best release profiles.


2020 ◽  
Vol 5 (1-2) ◽  
pp. 16-19
Author(s):  
Ahmed Abdalla Bakheit Abdelgader ◽  
Daud Baraka Abdallah ◽  
Elnazeer I. Hamedelniel ◽  
Hiba Atif Mutwakil Gafar ◽  
Mohammed Abdelrahman Mohammed

Starch is found almost in all organs of plants as a carbohydrate reserve. It is considered one of the most commonly used pharmaceutical additives, mainly in tablet dosage forms; it used as a tablet binder when incorporated through the wet granulation process or as a disintegrant. Cajanus cajan has a high level of carbohydrate, which makes it another potential choice as a source for starch. This study aims to investigate and optimize the effect of Cajanus cajan starch concentrations as well as wet massing granulation time on physicochemical properties of metronidazole tablets. The hardness, friability percentage, and disintegration time of prepared tablets were determined, and the central composite design was employed in the optimization process. Then the tablets of optimized batch were compared against those tablets in which maize starch and sodium starch glycolate were used instead of Cajanus cajan starch. The results indicated that metronidazole tablets containing the upper level of starch paste (Cajanus cajan and/or maize starch paste) exhibited better percentage friability, hardness, and disintegration time than those formulated with lower levels and those without starch paste. The study showed that experimental design is a useful technique for optimizing Cajanus cajan starch-based tablets, which enabled a better understanding of how different variables could affect the responses. In addition, the study demonstrated that incorporation of Cajanus cajan starch in tablets formulation led to improvement of its physical properties compared to the formulations of maize starch and sodium starch glycolate respectively.


Scientifica ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Frederick William Akuffo Owusu ◽  
Mariam El Boakye-Gyasi ◽  
Jacob Kwaku Agbenorhevi ◽  
Marcel Tunkumgnen Bayor ◽  
Kwabena Ofori-Kwakye

Okra pectin has been studied as a potential excipient in tablet formulations for pharmaceutical industries. Okra is widely grown and available in Ghana and other parts of the world. The prospective use of pectin from okra genotypes grown in Ghana as tablet disintegrants has not been reported. This study aims to determine the potential and comparative disintegrating properties of pectin from five okra genotypes (Abelmoschus esculentus L.) in Ghana using uncoated immediate release paracetamol tablet formulations. The yield of the pectin from the various genotypes ranged between 6.12 and 18.84% w/w. The extracted pectins had pH ranging from slightly acidic to almost neutral (6.39–6.92). Pectin from the various genotypes exhibited good swelling indexes (˃200%), varying solubility in different solvents, and low moisture content (˂20%). Elemental analysis of the extracted pectin from the various genotypes revealed very low levels of toxic metals and micronutrients. Pectin from the various genotypes was evaluated as disintegrants within concentrations of 5–10% w/w (F1–F18). Their disintegrating properties were compared to that of maize starch BP. All the formulated batches of uncoated immediate release paracetamol tablets (F1–F18) passed the following: uniformity of weight test, uniformity of dimensions, hardness, friability (˂1%), and drug content (95–105%). Significant differences ( p ≤ 0.05 ) were observed between the hardness of the maize starch tablets and tablets formulated from pectin of the various genotypes. Pectin from all genotypes other than PC5 exhibited good disintegrating properties (DT ˂ 15 min) and subsequently passed the dissolution profile test (≥70% release in 45 minutes). Tablets formulated with PC5 as disintegrants at all concentrations (5% w/w (F5), 7.5% w/w (F11), and 10% w/w (F17)) failed the disintegration and dissolution tests. Ultimately, pectins extracted from PC1, PC2, PC3, and PC4 can be commercially exploited as disintegrants in immediate release tablets.


2018 ◽  
Vol 10 (1) ◽  
pp. 31-38 ◽  
Author(s):  
S. Karim ◽  
A. Biswas ◽  
A. Bosu ◽  
F. R. Laboni ◽  
A. S. Julie ◽  
...  

Present study aspires at the design of an immediate release formulation with prospective use of fexofenadine hydrochloride by exploring the effect of sodium starch glycolate as super disintegrant. Fexofenadine hydrochloride immediate release tablets (Formulations F-1, F-2, F-3, F-4 and F-5) using different ratios of sodium starch glycolate as a disintegrant were prepared by direct compression method. Standard physicochemical tests were performed for all the formulations. Dissolution studies of the formulations were done in phosphate buffer, pH 6.8 using USP apparatus II (paddle apparatus) at 50 rpm. Percent release of fexofenadine hydrochloride of formulations F-1, F-2, F-3, F-4 and F-5 were 89.98%, 90.98%, 92.95, 96.92% and 99.85%, respectively after 1 h and the release pattern followed the zero order kinetics. The release rate in the formulation F-5 was higher compared to other formulations and the studied market products. Sodium starch glycolate speed up the release of the drug from the core tablets, and the release of fexofenadine hydrochloride from tablets was directly proportional to the amount of sodium starch glycolate present in the formulations and there by produced immediate action.


Sign in / Sign up

Export Citation Format

Share Document