scholarly journals Removal of Pb(II) from Aqueous Solution by Sorption on used Tea Leaves

1970 ◽  
Vol 33 (2) ◽  
pp. 167-178
Author(s):  
Tajmeri SA Islam ◽  
Hosne Ara Begum ◽  
Mohammad Abul Hossain ◽  
Mohammad Tanvir Rahman

Batch sorption study was performed using used black tea leaves (UBTL) as a low-cost adsorbent for the removal of lead (II) from aqueous solutions. Experiments were conducted as a function of contact time, initial metal ion concentration, solution pH and temperature. The sorption of Pb(II) on used tea leaves increases with increase of initial pH of solution upto a certain limit which corresponds to the pH nearly 5. The sorption isotherms follow Langmuir equation better than Freundlich equation. Again the Langmuir equation is more applicable at higher temperatures compared to those at low temperature at all pH. The monolayer sorption capacity decreases with increase in processing temperature but the overall sorbed amount increased with the increase in temperature at all pH. The positive value of estimated heat of sorption suggests the activated sorption. A probable mechanism of the sorption of Pb(II) on used tea leaves was proposed based on the surface charge of used tea leaves and the change of charge of Pb(II) with the pH of solution. DOI: 10.3329/jbas.v33i2.4100 Journal of Bangladesh Academy of Sciences, Vol. 33, No. 2, 167-178, 2009

2020 ◽  
Vol 11 (4) ◽  
pp. 11891-11904

In the present study, batch mode adsorption was carried out to investigate the adsorption capacity of dried bael flowers (Aegle marmelos) for the adsorptive removal of Cu(II) ions from aqueous solutions by varying agitation time, initial metal concentration, the dose of adsorbent, temperature, and initial pH of the Cu(II) ion solution. The percentage removal of 98.7% was observed at 50 ppm initial metal ion concentration, 0.5 g/100.00 cm3 adsorbent dosage, within the contact time of 120 minutes at 30 ºC in the pH range of 4 – 7. The sorption processes of Cu(II) ions was best described by pseudo-second-order kinetics. Langmuir isotherm had a good fit with the experimental data with 0.97 of correlation coefficient (R2), and the maximum adsorption capacity obtained was 23.14 mg g-1 at 30 ºC. The results obtained from sorption thermodynamic studies suggested that the adsorption process is exothermic and spontaneous. SEM analysis showed tubular voids on the adsorbent. FTIR studies indicated the presence of functional groups like hydroxyl, –C-O, –C=O, and amide groups in the adsorbent, which can probably involve in metal ion adsorption. Therefore, dried bael flowers can be considered an effective low-cost adsorbent for treating Cu(II) ions.


2009 ◽  
Vol 6 (s1) ◽  
pp. S347-S357 ◽  
Author(s):  
V. Vijayakumaran ◽  
S. Arivoli ◽  
S. Ramuthai

A carbonaceous adsorbent prepared from an indigenous waste, by acid treatment was tested for its efficiency in removing nickel ion. The process parameters studied include agitation time, initial metal ion concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plot were found to around 43 mg/g at an initial pH of 7.0. The temperature variation study showed that the nickel ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the nickel ion solutions. The Langmuir and Freundlich adsorption isotherms obtained, positive ΔH0value, pH dependent results and desorption of metal ions in mineral acid suggest that the adsorption of nickel ion on MCC involves chemisorption as well as physisorption mechanism.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wedad A. Al-Onazi ◽  
Mohamed H.H. Ali ◽  
Tahani Al-Garni

Some agricultural byproducts are useful for solving wastewater pollution problems. These byproducts are of low cost and are effective and ecofriendly. The study aim was to investigate the possibility of using pomegranate peel (PP) and date pit (DP) activated carbon (PPAC and DPAC, respectively) as sorbents to remove Cd(II) and Pb(II) from aqueous solutions. Agricultural wastes of DPs and PPs were subjected to carbonization and chemical activation with H3PO4 (60%) and ZnCl2 and used as adsorbents to remove Cd(II) and Pb(II) from their aqueous solutions. The physical characterizations of PPAC and DPAC, including determination of surface area, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy, were performed. The following factors affected adsorption: solution pH, adsorbent dosage, initial metal ion concentration, and contact time. These factors were studied to identify the optimal adsorption conditions. The results showed that the maximum adsorptions of Cd(II) and Pb(II) were achieved at pH ranging from 6 to 6.5, 90 min contact time, and 0.5 g/L for PPAC and 1 g/L for DPAC dosage. Furthermore, the adsorption efficiencies for both Pb(II) and Cd(II) were higher for PPAC than for DPAC. However, the recorded Qmax values for PPAC were 68.6 and 53.8 mg/g for Pb(II) and Cd(II) and for DPAC were 34.18 and 32.90 mg/g for Pb(II) and Cd(II), respectively. The Langmuir isotherm model fit the adsorption data better than the Freundlich model. Kinetically, the adsorption reaction followed a pseudo-second-order reaction model, with qe ranging from 12.0 to 22.37 mg/g and an R2 value of 0.99.


Author(s):  
Neetu Tewari ◽  
P Vasudevan

The adsorption of Hexavalent chromium [Cr (VI)] from aqueous solution by raw baggase was studied as a function of initial pH, contact time, dose, concentration and temperature. The optimum initial pH for Cr (VI) uptake was 2.0. At the optimal conditions, Cr (VI) uptake was increased as the dose of adsorbent; the initial metal ion concentration and temperature were increased. Adsorption was fast initially and within the first 30 minutes of contact, the adsorption of Cr (VI) on baggase showed a total uptake of 84.4%. The adsorption data fitted well to Langmuir isotherm model. The maximum adsorption of baggase was found to be 9.4 mg/g. The kinetics of the adsorption was found to be pseudo-second-order. Thermodynamic parameters like activation energy, Gibbs free energy change, enthalpy and entropy were also evaluated. The values for activation energy and enthalpy were found to be 13.4 and 10.7 kJ/mol. Adsorption was found to be endothermic.


2011 ◽  
Vol 322 ◽  
pp. 436-439 ◽  
Author(s):  
Xi Chan Zhang ◽  
Xing Guang Li

Present study deals with the evaluation of biosorptive removal of copper byFlavobacterium sp.Experiments have been carried out to find the effect of various parameters such as initial pH, contact time and initial metal ion concentration. Adsorption equilibrium studies showed that Cu(II) adsorption data followed the Langmuir model, the maximum binding capacity ofwas 55.20 mg/g at pH 6.0. Kinetics of copper biosorption by Flavobacterium sp. biomass is better described by pseudo second order kinetic model. It was also clearly observed that The present study indicated thatFlavobacterium sp.biomass may be used as a cost and effective biosorbent for the removal of Cu(II) ions from wastewater.


2008 ◽  
Vol 5 (4) ◽  
pp. 761-769 ◽  
Author(s):  
S. Madhavakrishnan ◽  
K. Manickavasagam ◽  
K. Rasappan ◽  
P. S. Syed Shabudeen ◽  
R. Venkatesh ◽  
...  

Activated carbon prepared from Ricinus communis Pericarp was used to remove Ni(II) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out by varying contact time, metal-ion concentration, carbon concentration and pH to assess kinetic and equilibrium parameters. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Qo) calculated from the Langmuir isotherm was 31.15 mg/g of activated carbon at initial pH of 5.0±0.2 for the particle size 125-250 µm.


2010 ◽  
Vol 7 (3) ◽  
pp. 1193-1201
Author(s):  
Baghdad Science Journal

In this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.


This study showed that kaolinite clay modified with Moringa oleifera pods is a promising low cost adsorbent for the removal of metals from aqueous solution because the resultant composite has higher adsorption capacities, and hence a better metal ions removal efficiency. The efficiencies of these adsorbents for the removal of Pb (II) and Cd (II) ions from aqueous solutions were studied as a function of pH, time, adsorbate concentration and adsorbent dose. Adsorption results showed that pH did significantly affect removal of heavy metal ions between pH 3 and 6. Increasing contact time and initial metal ion concentration increased the sorption capacity of the adsorbent for the metal ions. Adsorbent dosage indicated mainly surface phenomena involving sharing of electrons between the adsorbent surface and the metal ion species. The adsorption of metal ions from aqueous solutions of both metal ions at different initial metal ion concentrations reduced the initial adsorption rates of the adsorption of Pb (II) and Cd (II) by unmodified and modified kaolinite clay.


2019 ◽  
Vol 25 (6) ◽  
pp. 1416-1421 ◽  
Author(s):  
Moumita Mukherjee ◽  
Madhupriya Samanta ◽  
Gour P. Das ◽  
Kalyan K. Chattopadhyay

AbstractThe drive to replace scarce and expensive Pt-based electrocatalysts for oxygen reduction reaction (ORR) has led to the development of a group of electrocatalysts composed of transition-metal ion centers coordinated with four nitrogen groups (M-N4). Among these, metal phthalocyanines (MPcs), due to low cost of preparation, highly conjugated structure as well as high thermal and chemical stability, have received a great interest. The catalytic activity of MPcs can be improved by employing conducting supports. Here, in this report, we have solvothermally synthesized graphene-supported zinc phthalocyanine nanostructures, and their ORR kinetics and mechanism have been investigated in neutral solution (pH = 7) by using the rotating disk electrode technique. The as-synthesized nanocomposite followed a 4e− reduction pathway. The onset potential (−0.04 V versus Ag/AgCl) found in this work can be comparable with other state-of-the-art material, demonstrating good performance in neutral solution. The fascinating performance leads the nanocomposite material toward future energy applications.


2012 ◽  
Vol 9 (3) ◽  
pp. 1389-1399 ◽  
Author(s):  
R. Hema Krishna ◽  
A. V. V. S. Swamy

The powder of mosambi fruit peelings (PMFP) was used as an adsorbent for the removal of heavy metal like Cr (VI) from aqueous solutions was studied using batch tests. The influence of physico-chemical key parameters such as the initial metal ion concentration, pH, agitation time, adsorbent dosage, and the particle size of adsorbent has been considered in batch tests. Sorbent ability to adsorb Cr (VI) ions was examined and the mechanism involved in the process investigated. The optimum results were determined at an initial metal ion concentration was 10 mg/lit, pH=2, agitation time – 60 min, an adsorbent dose (150 mg/50 ml) and the particle size (0.6 mm). The % adsorption, Langmuir constants [Q0=7.51(mg/g) and b=1.69(mg/lit)] Freundlich constant(Kf=2.94), Lagergren rate constants (Kad(min-1)=5.75 x 10-2) for [Cr(VI)] 10 mg/lit were determined for the adsorption system as a function of sorbate concentration. The equilibrium data obtained were tested using Langmuir, Freundlich adsorption isotherm models, and the kinetic data obtained were fitted to pseudo first order model.


Sign in / Sign up

Export Citation Format

Share Document