Chapter 4: Pathogenesis of TBE with a focus on molecular mechanisms

Author(s):  
Andrea Kröger ◽  
Anna K. Överby

• In this chapter we describe the pathogenesis of tick-borne encephalitis virus (TBEV). • To cause infection, TBEV needs to cross three different barriers; the physical, the innate and adaptive, and the blood-brain barrier. • The trigger of innate immune and adaptive immune responses, by TBEV is necessary to clear the infection. • TBEV employs strategies to evade the innate immune response. • Tools to study TBEV pathogenicity such as mouse knock-out models and reverse genetics are also discussed.

In this chapter we describe the pathogenesis of tick-borne encephalitis virus (TBEV). To cause infection, TBEV needs to cross three different barriers; the physical, the innate and adaptive and the blood-brain barrier. The trigger of innate immune and adaptive immune responses, by TBEV is necessary to clear the infection. TBEV employs strategies to evade the innate immune response. Tools to study TBEV pathogenicity such as mouse knock-out models and reverse genetics are also discussed.


Author(s):  
Andrea Kröger ◽  
Anna K Överby

In this chapter we describe the pathogenesis of tick-borne encephalitis virus (TBEV). To cause infection, TBEV needs to cross three different barriers; the physical, the innate and adaptive and the blood-brain barrier. The trigger of innate immune and adaptive immune responses, by TBEV is necessary to clear the infection. TBEV employs strategies to evade the innate immune response. Tools to study TBEV pathogenicity such as mouse knock-out models and reverse genetics are also discussed.


2016 ◽  
Vol 90 (7) ◽  
pp. 3584-3599 ◽  
Author(s):  
Yanhua Li ◽  
Duan-Liang Shyu ◽  
Pengcheng Shang ◽  
Jianfa Bai ◽  
Kang Ouyang ◽  
...  

ABSTRACTPorcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 1β (nsp1β) is a multifunctional viral protein, which is involved in suppressing the host innate immune response and activating a unique −2/−1 programmed ribosomal frameshifting (PRF) signal for the expression of frameshifting products. In this study, site-directed mutagenesis analysis showed that the R128A or R129A mutation introduced into a highly conserved motif (123GKYLQRRLQ131) reduced the ability of nsp1β to suppress interferon beta (IFN-β) activation and also impaired nsp1β's function as a PRF transactivator. Three recombinant viruses, vR128A, vR129A, and vRR129AA, carrying single or double mutations in the GKYLQRRLQ motif were characterized. In comparison to the wild-type (WT) virus, vR128A and vR129A showed slightly reduced growth abilities, while the vRR129AA mutant had a significantly reduced growth ability in infected cells. Consistent with the attenuated growth phenotypein vitro, pigs infected with nsp1β mutants had lower levels of viremia than did WT virus-infected pigs. Compared to the WT virus in infected cells, all three mutated viruses stimulated high levels of IFN-α expression and exhibited a reduced ability to suppress the mRNA expression of selected interferon-stimulated genes (ISGs). In pigs infected with nsp1β mutants, IFN-α production was increased in the lungs at early time points postinfection, which was correlated with increased innate NK cell function. Furthermore, the augmented innate response was consistent with the increased production of IFN-γ in pigs infected with mutated viruses. These data demonstrate that residues R128 and R129 are critical for nsp1β function and that modifying these key residues in the GKYLQRRLQ motif attenuates virus growth ability and improves the innate and adaptive immune responses in infected animals.IMPORTANCEPRRSV infection induces poor antiviral innate IFN and cytokine responses, which results in weak adaptive immunity. One of the strategies in next-generation vaccine construction is to manipulate viral proteins/genetic elements involved in antagonizing the host immune response. PRRSV nsp1β was identified to be a strong innate immune antagonist. In this study, two basic amino acids, R128 and R129, in a highly conserved GKYLQRRLQ motif were determined to be critical for nsp1β function. Mutations introduced into these two residues attenuated virus growth and improved the innate and adaptive immune responses of infected animals. Technologies developed in this study could be broadly applied to current commercial PRRSV modified live-virus (MLV) vaccines and other candidate vaccines.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 323 ◽  
Author(s):  
Guoying Wang ◽  
Xianghui Li ◽  
Lei Zhang ◽  
Abualgasim Elgaili Abdalla ◽  
Tieshan Teng ◽  
...  

Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.


Blood ◽  
2010 ◽  
Vol 115 (10) ◽  
pp. 1865-1872 ◽  
Author(s):  
Olaf Penack ◽  
Ernst Holler ◽  
Marcel R. M. van den Brink

Abstract Acute graft-versus-host disease (GVHD) remains the major obstacle to a more favorable therapeutic outcome of allogeneic hematopoietic stem cell transplantation (HSCT). GVHD is characterized by tissue damage in gut, liver, and skin, caused by donor T cells that are critical for antitumor and antimicrobial immunity after HSCT. One obstacle in combating GVHD used to be the lack of understanding the molecular mechanisms that are involved in the initiation phase of this syndrome. Recent research has demonstrated that interactions between microbial-associated molecules (pathogen-associated molecular patterns [PAMPs]) and innate immune receptors (pathogen recognition receptors [PRRs]), such as NOD-like receptors (NLRs) and Toll-like receptors (TLRs), control adaptive immune responses in inflammatory disorders. Polymorphisms of the genes encoding NOD2 and TLR4 are associated with a higher incidence of GVHD in HSC transplant recipients. Interestingly, NOD2 regulates GVHD through its inhibitory effect on antigen-presenting cell (APC) function. These insights identify important mechanisms regarding the induction of GVHD through the interplay of microbial molecules and innate immunity, thus opening a new area for future therapeutic approaches. This review covers current knowledge of the role of PAMPs and PRRs in the control of adaptive immune responses during inflammatory diseases, particularly GVHD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Loïc Vivien Bocard ◽  
Andrew Robert Kick ◽  
Corinne Hug ◽  
Heidi Erika Lisa Lischer ◽  
Tobias Käser ◽  
...  

This study was initiated to better understand the nature of innate immune responses and the relatively weak and delayed immune response against porcine reproductive and respiratory syndrome virus (PRRSV). Following modified live virus (MLV) vaccination or infection with two PRRSV-2 strains, we analyzed the transcriptome of peripheral blood mononuclear cells collected before and at three and seven days after vaccination or infection. We used blood transcriptional modules (BTMs)-based gene set enrichment analyses. BTMs related to innate immune processes were upregulated by PRRSV-2 strains but downregulated by MLV. In contrast, BTMs related to adaptive immune responses, in particular T cells and cell cycle, were downregulated by PRRSV-2 but upregulated by MLV. In addition, we found differences between the PRRSV strains. Only the more virulent strain induced a strong platelet activation, dendritic cell activation, interferon type I and plasma cell responses. We also calculated the correlations of BTM with the neutralizing antibody and the T-cell responses. Early downregulation (day 0–3) of dendritic cell and B-cell BTM correlated to both CD4 and CD8 T-cell responses. Furthermore, a late (day 3–7) upregulation of interferon type I modules strongly correlated to helper and regulatory T-cell responses, while inflammatory BTM upregulation correlated more to CD8 T-cell responses. BTM related to T cells had positive correlations at three days but negative associations at seven days post-infection. Taken together, this work contributes to resolve the complexity of the innate and adaptive immune responses against PRRSV and indicates a fundamentally different immune response to the less immunogenic MLV compared to field strains which induced robust adaptive immune responses. The identified correlates of T-cell responses will facilitate a rational approach to improve the immunogenicity of MLV.


2020 ◽  
Vol 71 (1) ◽  
pp. 289-302 ◽  
Author(s):  
Geoffrey Lowell Chupp ◽  
Ravdeep Kaur ◽  
Anne Mainardi

The presentation, pathobiology, and prognosis of asthma are highly heterogeneous and challenging for clinicians to diagnose and treat. In addition to the adaptive immune response that underlies allergic inflammation, innate immune mechanisms are increasingly recognized to be critical mediators of the eosinophilic airway inflammation present in most patients with asthma. Efforts to classify patients by severity and immune response have identified a number of different clinical and immune phenotypes, indicating that the innate and adaptive immune responses are differentially active among patients with the disease. Advances in the detection of these subgroups using clinical characteristics and biomarkers have led to the successful development of targeted biologics. This has moved us to a more personalized approach to managing asthma. Here we review the emerging endotypes of asthma and the biologics that have been developed to treat them.


2021 ◽  
Vol 9 (4) ◽  
pp. 683
Author(s):  
Julio Villena ◽  
Chang Li ◽  
Maria Guadalupe Vizoso-Pinto ◽  
Jacinto Sacur ◽  
Linzhu Ren ◽  
...  

The most important characteristics regarding the mucosal infection and immune responses against the Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) as well as the current vaccines against coronavirus disease 2019 (COVID-19) in development or use are revised to emphasize the opportunity for lactic acid bacteria (LAB)-based vaccines to offer a valid alternative in the fight against this disease. In addition, this article revises the knowledge on: (a) the cellular and molecular mechanisms involved in the improvement of mucosal antiviral defenses by beneficial Lactiplantibacillus plantarum strains, (b) the systems for the expression of heterologous proteins in L. plantarum and (c) the successful expressions of viral antigens in L. plantarum that were capable of inducing protective immune responses in the gut and the respiratory tract after their oral administration. The ability of L. plantarum to express viral antigens, including the spike protein of SARS-CoV-2 and its capacity to differentially modulate the innate and adaptive immune responses in both the intestinal and respiratory mucosa after its oral administration, indicates the potential of this LAB to be used in the development of a mucosal COVID-19 vaccine.


2021 ◽  
Vol 12 ◽  
Author(s):  
Morgan Brisse ◽  
Qinfeng Huang ◽  
Mizanur Rahman ◽  
Da Di ◽  
Yuying Liang ◽  
...  

RIG-I and MDA5 are major cytoplasmic innate-immune sensor proteins that recognize aberrant double-stranded RNAs generated during virus infection to activate type 1 interferon (IFN-I) and IFN-stimulated gene (ISG) expressions to control virus infection. The roles of RIG-I and MDA5 in controlling replication of Pichinde virus (PICV), a mammarenavirus, in mice have not been examined. Here, we showed that MDA5 single knockout (SKO) and RIG-I/MDA5 double knockout (DKO) mice are highly susceptible to PICV infection as evidenced by their significant reduction in body weights during the course of the infection, validating the important roles of these innate-immune sensor proteins in controlling PICV infection. Compared to the wildtype mice, SKO and DKO mice infected with PICV had significantly higher virus titers and lower IFN-I expressions early in the infection but appeared to exhibit a late and heightened level of adaptive immune responses to clear the infection. When a recombinant rPICV mutant virus (rPICV-NPmut) that lacks the ability to suppress IFN-I was used to infect mice, as expected, there were heightened levels of IFN-I and ISG expressions in the wild-type mice, whereas infected SKO and DKO mice showed delayed mouse growth kinetics and relatively low, delayed, and transient levels of innate and adaptive immune responses to this viral infection. Taken together, our data suggest that PICV infection triggers activation of immune sensors that include but might not be necessarily limited to RIG-I and MDA5 to stimulate effective innate and adaptive immune responses to control virus infection in mice.


Sign in / Sign up

Export Citation Format

Share Document