scholarly journals Value aggregation of pine (Araucaria angustifolia) nuts agro-industrial waste by cellulose extraction

2021 ◽  
Vol 10 (10) ◽  
pp. e270101018836
Author(s):  
Silma de Sa Barros ◽  
Wanison André Gil Pessoa Jr. ◽  
Américo Cruz Júnior ◽  
Zeane Vieira Borges ◽  
Cláudio Michel Poffo ◽  
...  

Araucaria (Araucaria angustifolia) is a tree species found in the Southeast and South of Brazil. It is also known as Brazilian pine, presenting fruits of high acceptance. However, its processing generates by-products that are little used. Thus, this work aimed to extract and characterize the cellulose obtained from the pinion husk, as well as to evaluate the contents of ash, lignin, cellulose and α-cellulose in its composition. The raw material and the extracted cellulose were characterized by X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). As for the contents of chemical composition detected, the husks showed 1.6% ash, 7% extractives, 34% lignin and 55% cellulose, being 46% α-cellulose and 9% hemicellulose. It was observed by XRD that the removal of amorphous materials resulted in a gain of crystallinity (from 19 to 33%). Proving the efficiency of the extraction, the characterization of the cellulose obtained was shown to be of high purity, since the main band of the lignin (FTIR) and the amorphous materials of the cellulosic sample (TGA) disappeared. Finally, this work shows that the pinion bark is a rich source of cellulose, making it possible to obtain nanocrystals.

2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 459-470
Author(s):  
Mouhssin El Halim ◽  
Lahcen Daoudi ◽  
Meriam El Ouahabi ◽  
Valérie Rousseau ◽  
Catherine Cools ◽  
...  

ABSTRACTTextural, mineralogical and chemical characterization of archaeological ceramics (zellige) from El Badi Palace (Marrakech, Morocco), the main Islamic monument from the Saadian period (sixteenth century), has been performed to enhance restoration and to determine the technology of manufacturing. A multi-analytical approach based on optical and scanning electron microscopy, cathodoluminescence, X-ray fluorescence and X-ray diffraction was used. Re-firing tests on ceramic supports were also performed to determine the firing temperatures used by the Saadian artisans. A calcareous clay raw material was used to manufacture these decorative ceramics. The sherds were fired at a maximum temperature of 800°C in oxidizing atmosphere. The low firing temperature for ‘zellige’ facilitates cutting of the pieces, but also causes fragility in these materials due to the absence of vitreous phases.


Cerâmica ◽  
2006 ◽  
Vol 52 (324) ◽  
pp. 240-244 ◽  
Author(s):  
M. N. Freire ◽  
J. N. F. Holanda

In Brazil, the food industry generates every year huge amounts of avian eggshell waste, and a critical question is to find an adequate use for this waste. The aim of this work is to determine the chemical, mineralogical and physical characteristics of a nonprocessed avian eggshell waste sample, as well as to investigate its use in wall tile paste. The sample was analyzed regarding to chemical composition, X-ray diffraction, morphology, particle size analysis, density, organic matter, soluble salts, and thermal analysis. The results indicated that the eggshell waste sample rich in CaCO3 can be used as an alternative raw material in the production of wall tile materials.


2011 ◽  
Vol 5 (2) ◽  
pp. 97-101 ◽  
Author(s):  
Nadezda Stankovic ◽  
Mihovil Logar ◽  
Jelena Lukovic ◽  
Jelena Pantic ◽  
Miljana Miljevic ◽  
...  

Based on mineralogical and technological investigations of the deposit 'Greda' important characteristics of bentonite clay were determined. Representative samples of the deposit were characterized with X-ray diffraction, low-temperature nitrogen adsorption, chemical analysis, differential thermal analysis and scanning electron microscopy. It was determined that the main mineral is montmorillonite and in subordinate quantities kaolinite, quartz and pyrite. The chemical composition generally shows high silica and alumina contents in all samples and small quantities of Fe3+, Ca2+ and Mg2+ cations. Based on technological and mineralogical research, bentonite from this deposit is a high-quality raw material for use in the ceramic industry.


Author(s):  
Renita Manurung ◽  
Muhammad Dedi Anggreawan ◽  
Alwi Gery Agustan Siregar

In this research, the bamboo leaf shows promise as an alternative raw material for silica production. This study investigated the performance of heterogeneous catalyst prepared from silica derived bamboo leaf ash after that impregnated with phosphoric acid at ratio various. The catalyst was characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Brunauer Emmet Teller (BET) and Barrett, Joyner and Halenda (BJH) method and triacetin product analyzed by GC-MS. The optimum condition phosphoric silica catalyst was obtained at phosphoric silica molar ratio of 1:2 and employed in the acetylation of glycerol, respectively. As result, 24 % selectivity for triacetin was obtained in the presence of catalytic amount 5%, molar ratio 1:9 at 100 °C for 4 hours. Bamboo leaf derived phosphoric silica calcined showed high potential to be used as an easy to prepare and high-performance solid catalyst for industrial scale.


2013 ◽  
Vol 873 ◽  
pp. 267-272
Author(s):  
Xi Xi Zhu ◽  
Li Wang ◽  
Wei Jia Gao

Fe/Ni pillared montmorillonite is synthesized by precursor method. Organic pillared montmorillonite is prepared first by ion exchange with Cetyltrimethyl ammonium bromide (CTAB) using Ca-montmorillonite as raw material after pretreatment. Fe/Ni pillaring agents is prepared by copolymerization method. Then the Fe/Ni pillared montmorillonite is synthesized through ion exchanging and calcining. The structural changes and thermostability were studied through X-ray diffraction, X-ray fluorescence analysis, infrared spectroscopy and TG. analysis. The concentration of CTAB has a significant effect on interlayer space height of momtmorillonite, which can reach 3.9756nm when the concentration is 3CEC. The interlayer space height of Fe/Ni pillared montmorillonite can reach 2.4001nm when when n (Fe3+):n (Ni2+) is equal to 7:3, and it remains 1.7876nm after calcined at 400°C for 2h. This indicates that thermostability is good. Pillaring agents embedded into montmorillonite interlayer, and bonding reaction happened between the skeleton of montmorillonite ([Si4O10]n) and pillaring agents, which forms the bonding of Si-M (Fe or Ni).


2012 ◽  
Vol 496 ◽  
pp. 259-262
Author(s):  
Yuan Rui Wang ◽  
Feng Juan Liu ◽  
Guo Jun Qiang ◽  
Jiang Lei Hu

The optimal conditions of prepared magnesium hydroxide using dolomite as raw material were systematically explored by carbonization. The influence between the factors of reactions and the extraction rate of magnesium hydroxide was studied. The structure and composition of product were analyzed by Fourier transform infrared spectrometer, X ray diffraction and electron microscopy. In the conditions, the extraction rate could be up to 90.32%, and its crystal was a hexagonal-type. This method has many kinds of advantages, such as simple operation, low costs of production, eliminating the environmental pollution and comprehensive utilization of by-products.


Sign in / Sign up

Export Citation Format

Share Document