scholarly journals Influence of the shaker mill in the properties of ZnO processed by high energy milling

2021 ◽  
Vol 10 (12) ◽  
pp. e476101220855
Author(s):  
Ana Gabriela Storion ◽  
Eliria Maria de Jesus Agnolon Pallone ◽  
Tania Regina Giraldi ◽  
Sylma Carvalho Maestrelli

This work evaluates how the High Energy Ball Milling (HEBM) in a shaker mill influences the optical, physical, and microstructural properties of ZnO. The procedure also combines Fe inclusion from the grinding medium with particle size reduction. ZnO powder was milled by 1, 2, 3, 4, and 5 h, which resulted in a particle size reduction to the nanometric scale with a mean size of around 50 nm and a crystallite size reduction by three times when processed from 4 h. Milling has proven to be an efficient process for obtaining nanoparticles with an incredibly short processing time and changed the morphology of the particles from random to spherical shapes. Results also indicate the processing progressively expanded the ZnO hexagonal structure due to the imposed strain and Fe inclusion, which can help to decrease the bandgap and slow down the recombination rate of the electron-hole pairs, improving the photocatalysis activity. The optical results showed no additional band appeared due to milling processes and diminished the bandgap from 3.37 to 3.21 eV. Milling also led to an increase in the c value from 5.2076 to 5.2112 Å, which is one of the most important factors for improved antibacterial activity. HEBM has proved to be a suitable process for obtaining ZnO nanoparticles with properties useful for various applications.

2012 ◽  
Vol 190 ◽  
pp. 585-588
Author(s):  
S.F. Lomayeva ◽  
A.N. Maratkanova ◽  
Konstantin N. Rozanov ◽  
D. A. Petrov ◽  
Eugene P. Yelsukov

The structural-phase composition, magnetic and microwave properties of Fex(SiO2)1-x (x=30, 70, 90, 95) nanocomposites have been studied. The composites are produced by high-energy ball milling with either Ar or acetone as a milling medium and milling time of 1 to 64 h. The microwave magnetic properties of the composite in the frequency range of 0.1 to 6 GHz are shown to depend slightly on the phase composition and be governed mainly by the particle size. Reduction of the particle size to about 1 μm results in elimination of magnetic loss at frequencies below 1 GHz, which is attributed to the domain walls motion.


2017 ◽  
Vol 32 (S1) ◽  
pp. S135-S140 ◽  
Author(s):  
Elisa Cappelletto ◽  
Luca Rebuffi ◽  
Alberto Flor ◽  
Paolo Scardi

In this work, a poorly water-soluble drug (efavirenz) was mechanically activated by ball-milling. The effect of the mechanical activation on the dissolution behavior was investigated considering changes in the particle size and morphology. The powder diffraction was used to follow the comminution process, verifying phase compositions, and crystalline domain size. The interplay between domain and grain size was studied in relation to the solubility rate, through specific dissolution tests. Finally, the morphological characterization has allowed to complete the physical–chemical characterization of the milled powders. This study demonstrated that the mechanical activation of the drug leads the particle size reduction and, with a long milling time, morphological changes. The grain size reduction is not always sufficient to increase the solubility: morphology and agglomeration grade play an important role in the dissolution process.


2020 ◽  
Vol 2 (5) ◽  
pp. 1484-1496 ◽  
Author(s):  
Jesús López-Sánchez ◽  
Elena Navarro ◽  
Aída Serrano ◽  
Cecilia Granados-Miralles ◽  
Adolfo del Campo ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 668 ◽  
Author(s):  
Hyun Na Kim ◽  
Jin Woo Kim ◽  
Min Sik Kim ◽  
Bum Han Lee ◽  
Jin Cheul Kim

The properties and preparation of talc have long been investigated due to its diverse industrial applications, which have expanded recently. However, its comminution behavior is not yet fully understood. Therefore, having better control of the particle size and properties of talc during manufacturing is required. In this study, we investigate the effect of the ball size in a high-energy ball mill on the comminution rate and particle size reduction. High-energy ball milling at 2000 rpm produces ultrafine talc particles with a surface area of 419.1 m2/g and an estimated spherical diameter of 5.1 nm. Increasing the ball size from 0.1 mm to 2 mm increases the comminution rate and produces smaller talc particles. The delamination of (00l) layers is the main comminution behavior when using 1 mm and 2 mm balls, but both the delamination and rupture of (00l) layers occurs when using 0.1 mm balls. The aggregation behavior of ground talc is also affected by the ball size. Larger aggregations form in aqueous solution when ground with 0.1 mm balls than with 1 mm or 2 mm balls, which highlights the different hydro-phobicities of ground talc. The results indicate that optimizing the ball size facilitates the formation of talc particles of a suitable size, crystallinity, and aggregation properties.


2018 ◽  
Vol 60 (1) ◽  
pp. 42-45
Author(s):  
Tuan Quang Nguyen ◽  
Van Lam Nguyen ◽  
Thai Son Nguyen ◽  
Thi Minh Hue Pham ◽  
◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 971
Author(s):  
Oktawian Bialas ◽  
Mateusz Lis ◽  
Anna Woźniak ◽  
Marcin Adamiak

This paper analyses the possibility of obtaining surface-infused nano gold particles with the polyether ether ketone (PEEK) using picosecond laser treatment. To fuse particles into polymer, the raw surface of PEEK was sputtered with 99.99% Au and micromachined by an A-355 laser device for gold particle size reduction. Biomimetic pattern and parameters optimization were key properties of the design for biomedical application. The structures were investigated by employing surface topography in the presence of micron and sub-micron features. The energy of the laser beam stating the presence of polymer bond thermalisation with remelting due to high temperature was also taken into the account. The process was suited to avoid intensive surface modification that could compromise the mechanical properties of fragile cardiovascular devices. The initial material analysis was conducted by power–depth dependence using confocal microscopy. The evaluation of gold particle size reduction was performed with scanning electron microscopy (SEM), secondary electron (SE) and quadrant backscatter electron detector (QBSD) and energy dispersive spectroscopy (EDS) analysis. The visibility of the constituted coating was checked by a commercial grade X-ray that is commonly used in hospitals. Attempts to reduce deposited gold coating to the size of Au nanoparticles (Au NPs) and to fuse them into the groove using a laser beam have been successfully completed. The relationship between the laser power and the characteristics of the particles remaining in the laser irradiation area has been established. A significant increase in quantity was achieved using laser power with a minimum power of 15 mW. The obtained results allowed for the continuation of the pilot study for augmented research and material properties analysis.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2856
Author(s):  
Gary B. Smejkal ◽  
Edmund Y. Ting ◽  
Karthik Nambi Arul Nambi ◽  
Richard T. Schumacher ◽  
Alexander V. Lazarev

Stable, oil-in-water nanoemulsions containing astaxanthin (AsX) were produced by intense fluid shear forces resulting from pumping a coarse reagent emulsion through a self-throttling annular gap valve at 300 MPa. Compared to crude emulsions prepared by conventional homogenization, a size reduction of over two orders of magnitude was observed for AsX-encapsulated oil droplets following just one pass through the annular valve. In krill oil formulations, the mean hydrodynamic diameter of lipid particles was reduced to 60 nm after only two passes through the valve and reached a minimal size of 24 nm after eight passes. Repeated processing of samples through the valve progressively decreased lipid particle size, with an inflection in the rate of particle size reduction generally observed after 2–4 passes. Krill- and argan oil-based nanoemulsions were produced using an Ultra Shear Technology™ (UST™) approach and characterized in terms of their small particle size, low polydispersity, and stability.


Sign in / Sign up

Export Citation Format

Share Document