scholarly journals Dopamine docking studies of biologically active metabolites from Curcuma longa L.

2021 ◽  
Vol 10 (7) ◽  
pp. e59910716992
Author(s):  
Danilo Magnani Bernardi ◽  
Juliana Pelissari Marchi ◽  
Cintia de Souza Alferes Araújo ◽  
Vanessa Rodrigues do Nascimento ◽  
Diego de Souza Lima ◽  
...  

The dopaminergic system is involved in a wide range of neuropsychiatric and neurodegenerative disorders. The lack of receptor subtype specificity is related to several pharmacological side effects that are observed during therapy among parkinsonian and schizophrenic patients. It is of paramount importance to search for new compounds that act on dopamine receptors with therapeutic potential, higher clinical effectiveness, and fewer adverse effects. In the present study, we performed a molecular docking study of D2, D3, and D4 receptor interactions with 92 metabolites from Curcuma longa using an in silico approach. We sought to identify compounds for possible drug development. A virtual library of compounds was built using molecules that were identified in the phytochemical characterization of C. longa. Protocols that were validated by redocking were applied to a virtual scan of this library using the Autodock-v4.2.3, Autodock Vina, and Molegro-v6.0 Virtual Docker programs, with four repetitions each. The three-dimensional structures of D2, D3, and D4 receptors in complex with risperidone, eticlopride, and nemonapride were obtained from the Protein Data Bank. Four compounds—stigmasterol, β-sitosterol, cholest-5-en-3-one, and cholestan-3-ol,2-methylene-(3β, 5α)—were the most likely to bind D2, D3, and D4 dopamine receptors, suggesting their potential for possible drug development.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Azene Tesfaye

Background. Garlic is a common bulb vegetable that is used to flavor and flavor food. The plant contains biologically active components that contribute to its pharmacological properties. This paper attempts to examine the therapeutic uses and potential role in the drug development of garlic for various human diseases. Methods. To obtain crucial data and scientific knowledge about the therapeutic uses of garlic, systematic literature searches were conducted using key terms on well-known indexed platforms such as PubMed, Scopus, Web of Science, Medline, Embase, and popular search engines. Results. Garlic, which is utilized as a spice and flavoring ingredient, is found to have fundamental nutritional components. Carbohydrates, protein, fat, minerals, water, and vitamins are all found in abundance in this plant. The plant also has a high medicinal value and is used to cure a variety of human diseases. It has anti-inflammatory, rheumatological, ulcer inhibiting, anticholinergic, analgesic, antimicrobial, antistress, antidiabetes, anticancer, liver protection, anthelmintics, antioxidants, antifungal, and wound healing properties, as well as properties that help with asthma, arthritis, chronic fever, tuberculosis, runny nose, malaria, leprosy, skin discoloration, and itching, indigestion, colic, enlarged spleen, hemorrhoids, fistula, bone fracture, gout, urinary tract disease, diabetes, kidney stones, anemia, jaundice, epilepsy, cataract, and night blindness. Conclusions. The nutritional content of the plant is significant, and it has incredible therapeutic potential. The findings of this study are needed to investigate the therapeutic potential, as it may be a promising option for drug development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bo-Chen Chen ◽  
Zhi-Shan Ding ◽  
Jian-Sheng Dai ◽  
Ni-Pi Chen ◽  
Xing-Wen Gong ◽  
...  

The rapid rise of antibiotic resistance causes an urgent need for new antimicrobial agents with unique and different mechanisms of action. The respiratory chain is one such target involved in the redox balance and energy metabolism. As a natural quinone compound isolated from the root of Salvia miltiorrhiza Bunge, cryptotanshinone (CT) has been previously demonstrated against a wide range of Gram-positive bacteria including multidrug-resistant pathogens. Although superoxide radicals induced by CT are proposed to play an important role in the antibacterial effect of this agent, its mechanism of action is still unclear. In this study, we have shown that CT is a bacteriostatic agent rather than a bactericidal agent. Metabolome analysis suggested that CT might act as an antibacterial agent targeting the cell membrane. CT did not cause severe damage to the bacterial membrane but rapidly dissipated membrane potential, implying that this compound could be a respiratory chain inhibitor. Oxygen consumption analysis in staphylococcal membrane vesicles implied that CT acted as respiratory chain inhibitor probably by targeting type II NADH:quinone dehydrogenase (NDH-2). Molecular docking study suggested that the compound would competitively inhibit the binding of quinone to NDH-2. Consistent with the hypothesis, the antimicrobial activity of CT was blocked by menaquinone, and the combination of CT with thioridazine but not 2-n-heptyl-4-hydroxyquinoline-N-oxide exerted synergistic activity against Staphylococcus aureus. Additionally, combinations of CT with other inhibitors targeting different components of the bacterial respiratory chain exhibit potent synergistic activities against S. aureus, suggesting a promising role in combination therapies.


Inventions ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 29 ◽  
Author(s):  
Hidayat Hussain ◽  
Ivan R. Green ◽  
Muhammad Saleem ◽  
Muhammad Liaquat Raza ◽  
Mamona Nazir

Iridoids belong to a family of monoterpenoids comprising the cyclopentan[c]-pyran system; this class of compounds offers a wide range of biological effects, namely antileishmanial, anticancer, antiplasmodial, and anti-inflammatory potency. To date, a large number of biologically active iridoid derivatives have been reported from various plant families, including Rubiaceae, Plantaginaceae, Scrophulariaceae, and Verbenaceae. Furthermore, iridoids have the potential to form conjugates with other anticancer, antidiabetic, antileishmanial, and antimalarial drugs which synergistically have the potential to increase their effects. Additionally, future research should focus on the synthesis of halo analogs as well as preparing homo dimers or heterodimers of iridoids, since these might quite conceivably possess an increased bioactivity.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (01) ◽  
pp. 47-63
Author(s):  
V. S. Arya ◽  
◽  
S. K. Kanthlal

Inflammatory bowel disorder is a group of inflammatory conditions of the colon and small intestine with greater prevalence among the Indian population. Our focus is to explore and compare the therapeutic potential of phytoconstituents from apple and passion fruit by assessing the affinity with the target sites such as JAK/STAT, MPO and iNOS by molecular docking studies. ADMET prediction and drug-likeness were also conducted to screen out the best-fit ligands, whic are expected to be biologically effective. Few selected constituents displayed considerable binding affinity with the selected targets in our docking study. Interestingly, ligands of phenolic nature displayed the highest inhibitory activity by forming strong hydrogen bonding and van der Waals force with the amino acid residues of the target protein. Comparative study proves that constituents of apple showed better effect than passion fruit. It helps to give the existing information to identify precise targets for the selected drugs. However, the results are preliminary and experimental evaluation needs to be done for obtaining the confirmatory results.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3745 ◽  
Author(s):  
Stefania Mazzini ◽  
Loana Musso ◽  
Sabrina Dallavalle ◽  
Roberto Artali

A novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) has been the cause of a recent global pandemic. The highly contagious nature of this life-threatening virus makes it imperative to find therapies to counteract its diffusion. The main protease (Mpro) of SARS-CoV-2 is a promising drug target due to its indispensable role in viral replication inside the host. Using a combined two-steps approach of virtual screening and molecular docking techniques, we have screened an in-house collection of small molecules, mainly composed of natural and nature-inspired compounds. The molecules were selected with high structural diversity to cover a wide range of chemical space into the enzyme pockets. Virtual screening experiments were performed using the blind docking mode of the AutoDock Vina software. Virtual screening allowed the selection of structurally heterogeneous compounds capable of interacting effectively with the enzymatic site of SARS-CoV-2 Mpro. The compounds showing the best interaction with the protein were re-scored by molecular docking as implemented in AutoDock, while the stability of the complexes was tested by molecular dynamics. The most promising candidates revealed a good ability to fit into the protein binding pocket and to reach the catalytic dyad. There is a high probability that at least one of the selected scaffolds could be promising for further research


1988 ◽  
Vol 66 (1) ◽  
pp. 45-50 ◽  
Author(s):  
R. Fathi-Afshar ◽  
T. M. Allen

Two novel bicyclic diterpenoides, agelasimine-A (9), and agelasimine-B (10), have been isolated from the orange sponge Agelas mauritiana. Also, a new bromine-containing alkaloid, 5-debromomidpacamide (12), along with midpacamide (13) and methyl N-methyl-4,5-dibromopyrrole-2-carboxylate (11), has been isolated. The structures were determined by interpretation of their spectral data. Agelasimine-A and -B exhibit a wide range of interesting biological activities such as cytotoxicity, inhibition of adenosine transfer into rabbit erythrocytes, Ca2+-channel antagonistic action, and α1 adrenergic blockade.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110206
Author(s):  
Dongyi Hu ◽  
Jiayu Gao ◽  
Xiao Yang ◽  
Ying Liang

Curcumae Radix is an efficacious ingredient with various medicinal properties empirically used in traditional Chinese medicine (TCM) formula for the treatment of cancer, depression, chest pain, dysmenorrhea, epilepsy, and jaundice. However, either phytochemical or pharmacological information of Curcumae Radix underlying its traditionally medicinal uses is rarely summarized and systematically analyzed. To provide evidence for clinical trials, a comprehensive literature review has been prepared of the phytochemicals, and ethnopharmacological and pharmacological mechanisms of this herb. The review approach consisted of searching several web-based scientific databases, including PubMed, Web of Science, and Elsevier. The keywords included “Curcumae Radix,” “ Curcuma wenyujin,” “ Curcuma longa,” “ Curcuma kwangsiensis,” and “ Curcuma phaeocaulis.” Based on the proposed criteria, 57 articles were evaluated in detail. The accumulated data indicate that Curcumae Radix contains a number of bioactive phytochemicals, mainly sesquiterpenes, diarylheptanoids, and diarylpentanoids, which account for a variety of medicinal values, such as anticancer, anti-inflammation, anti-hepatic fibrosis, and antioxidant. A wide range of apoptotic proteins, cell adhesion molecules, inflammatory cytokines, and enzymic and nonenzymic antioxidants could be modulated by either Curcumae Radix or its bioactive compounds, thus underpinning a fundamental understanding for the pharmacological effects of this herb. This review highlights the therapeutic potential of Curcumae Radix to progress the development of versatile adjuvants or therapeutic agents in the future.


2021 ◽  
Vol 3 (1) ◽  
pp. 124-130
Author(s):  
Nabila Shafa Athharani ◽  
Nugraha Sutadipura ◽  
Yuli Susanti

Penemuan berbagai senyawa obat baru dari berbagai proses penelitian yang semakin memperjelas peran penting studi komputasi sebagai dasar awal untuk menemukan sumber bahan baku obat baik dari alam maupun sintetis. Infeksi nosokomial dapat disebabkan oleh bakteri, virus atau patogen lain di rumah sakit, dan ditularkan melalui peralatan di rumah sakit. Salah satu bakteri yang paling sering menyebabkan infeksi adalah Acinetobacter baumanii bakteri tersebut dapat membangun resistensi dalam tubuh. Metode penelitian ini dilakukan secara in silico dengan metode molecular docking dengan melihat penambatan molekul senyawa yang dimilikinya. Hasil penelitian menunjukkan bahwa senyawa yang diuji terhadap target reseptor yaitu Acinetobacter baumanii memiliki kemampuan sebagai antibakteri, terlihat dari ikatan afinitas yang diperoleh dari sekitar -7,7 kkal/mol hingga -8,1 kkal/mol. Kesimpulannya, kunyit dapat digunakan sebagai kandidat untuk mencegah Acinetobacter baumanii menjadi resisten. Molecular Docking Study of Curcuma Longa Compounds on Bacteria Resistant Carbapenem Acinetobacter Baumanii with in Silico MethodThe discovery of various new medicinal compounds from various research processes that further clarify the important role of computational studies as the initial basis for finding sources of medicinal raw materials both from natural and synthetic. Nosocomial infections can be caused by bacteria, viruses or other pathogens in the hospital and transmitted through equipment in the hospital. One of the bacteria that most often causes infection is Acinetobacter baumanii where these bacteria can build up resistance in the body. Method  of  this research is carried out in silico with the molecular docking method by looking at the docking of its compound molecules. The results showed that of the compounds tested against the receptor target, Acinetobacter Baumanii, had the ability as antibacterial, seen from the affinity bonds obtained from around -7.7 kcal/mol to -8.1 kcal/mol.  Conclusion is turmeric can be used as a candidate to prevent Acinetobacter baumanii from becoming resistance.


2020 ◽  
Vol 9 (3) ◽  
pp. 1217-1224

Coronavirus (COVID-19) is more than a health disaster;it is the greatest challenge that the world confrontsnowadays. There is a race to slow the spread of this disease. Searching for an antiviral agent to stop COVID-19 is an essential demand since there is no approved drug for COVID-19 till now. Molecular docking is a powerful tool in predicting new drugs. In this study, Favpiravir (Avigan), Hydroxychloroquine, and a series of biologically active compounds derived from iso-nicotinoyl hydrazide have been chosen for molecular docking study. Molecular docking was carried out by theMolegro virtual docker program on proteaseenzyme of COVID-19.The results showed that all the studied molecules are located in the active sites of protease after molecular docking. The tested nicotinoyl hydrazide derivatives showed a higher ranking docking score than Favpiravir (Avigan). According to the docking score ranking rearrangement, Hydroxychloroquine comes the third, and Favpiravir comes the last among the tested compounds. N(2-iso-nicotinoyl hydrazine-carbonthioyl)benzamide(2) and the enol form of (E)-N-(1-phenylethylidene)-nicotinohydrazide(7) have shown the highest docking score (123.23 and -123.12 kcal/mol respectively) among the tested compounds. Ligands (2) and (7) are expected to be potential inhibitors of the main protease enzyme of coronavirus.


Sign in / Sign up

Export Citation Format

Share Document