scholarly journals Synthesis and characterization of an experimental 3Y-TZP dental ceramic prepared by polymeric precursors method

2020 ◽  
Vol 9 (10) ◽  
pp. e7919109123
Author(s):  
Fabíola Stahlke Prado ◽  
Tânia Cristina Simões ◽  
Alejandra Hortencia Miranda González

The aim of the investigation was to synthesize 3 mol% yttria-stabilized zirconia (3Y-TZP) powders via polymeric precursor method (PPM). The precursor solution was preheated at 350ºC for 3h, subsequently thermally treated at 500ºC for 3h and 800ºC for 6h. The obtained materials were analyzed by Thermogravimetry-Derivative Thermogravimetry (TG/DTG), Differential Thermal Analysis (DTA), powder X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Two commercially available Y-TZP ceramic systems were chosen for comparison. XRD analysis of the synthesized 3Y-TZP powders revealed the crystallization of the tetragonal phase, while both commercial systems showed the coexistence of the monoclinic and tetragonal phases. SEM analysis showed that the powders thermally treated at 800°C consist of agglomerated spherical nanoparticles. Morphology of commercial systems also revealed nanosized spherical particles. Results revealed that the PPM led to ceramics with structural and morphological properties comparable to commercially available reinforced dental ceramics.

2017 ◽  
Vol 68 (4) ◽  
pp. 707-710
Author(s):  
Horia Manolea ◽  
Mirela Opri ◽  
Nicoleta Cioatera ◽  
Adriana Voinea ◽  
Radu Rica ◽  
...  

The aim of this study was to present and discuss the characteristics of three ceramic powders as well as the sintered material from the three commercial dental ceramics produced by Vita Zahnfabrik, Germany (VM13 and VMK Master, used for veneering metal frameworks, respectivelly VM9 used for veneering zirconia frameworks). An X-ray diffraction (XRD) analysis was performed, Raman spectra were recorded and the morphology of the samples was evidenced by using a high resolution scanning electron microscope, equipped with an EDXS detector. The results of this study corroborated with the presented literature data helps practitioners to better understand the interaction of these biomaterials with oral tissues, and, also helps researchers to modify the properties of ceramics for a better integration in the intraoral condition.


Author(s):  
Priscila Richa ◽  
Roberto Costa Lima ◽  
Ana Paula Santiago de Falco ◽  
Ana Paula da Silva ◽  
Elvia Leal ◽  
...  

Radar-absorbing materials (RAMs) have been used in military applications for several decades to reduce radar detection of vessels and aircrafts. In the present work, the performance of Ni0.35Zn0.35Cu0.3Fe2O4 ferrite as a RAM is investigated. The ferrite was firstly synthesized by combustion reaction and then calcinated at 1200 °C for 1 h. Composites were prepared with 80:20, 70:30 and 60:40 concentrations in weight of ferrite:polychloroprene. The X-ray diffraction (XRD) analysis showed a single phase ferrite formation and the scanning electron microscopy (SEM) analysis of the composites showed a good dispersion of the ferrite in the polychloroprene matrix. The electromagnetic (EM) characterization of the composites revealed that the EM attenuation is mainly attributed to magnetic losses observed in the material. The 80:20 composite achieved the best performance and presented a reflectivity of -26.7 dB at 10.2 GHz.


2014 ◽  
Vol 925 ◽  
pp. 396-400 ◽  
Author(s):  
Robabeh Bashiri ◽  
Norani Muti Mohamed ◽  
Chong Fai Kait ◽  
Suriati Sufian

Titania (TiO2) as a semiconductor has been intensively studied during the last decades. Regardless of its superior photocatalytic performance and extensive environmental applications, it has a wide bandgap which lead to a photocatalytic activity only in ultraviolet (UV) irradiation. To shift the activity of TiO2 to visible region, a series of monometallic and bimetallic doped TiO2 was prepared with 10wt% total metals loading. The photocatalysts were synthesized by sol-gel associated via hydrothermal method. The properties of the photocatalysts such as crystal size, surface morphology, total surface area, chemical state of the elements, and bandgap were investigated by using thermogravimetric analysis (TGA), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and Brunauer–Emmett–Teller (BET) measurement. XRD analysis showed that all samples displayed anatase (101) as a main phase of TiO2 with average crystal size between 10-16 nm in a good agreement with the TEM results. The FESEM images show spherical particles less than 20 nm in size. The BET results indicated that all samples are mesoporous. The band gap of Ni-Cu/TiO2 is reduced to 2.65 eV with more absorbance in the visible region compared to those of cu/TiO2 and Ni/TiO2.


2019 ◽  
Vol 280 ◽  
pp. 04003
Author(s):  
Agus Mirwan ◽  
Meilana Dharma Putra ◽  
Riani Ayu Lestari

The existence of peat clay is scattered in many parts of the world with the huge amount. The high compound of minerals in the peat clay can be potentially used as adsorbent and catalyst. This research aims to study the composition of peat clay and functional group of the compound in the peat clay. The characterization of x-ray fluorescence (XRF), fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and scanning electron microscope-energy dispersive x-ray (SEM- EDX) were assigned to compare the sample before and after calcination process at 700 oC 120 min. FTIR analysis showed the presence of quartz, kaolinite, hematite, illite in peat clay. The results of XRF analysis showed that chemical composition of peat clay was dominantly in the form of silica oxide (18%), aluminum oxide (7%), and iron oxide (15%). The amount of compounds was observed to increase to be 32%, 18% and 11%, respectively after calcinations. XRD analysis confirmed the presence of this mineral in the peat clay. SEM analysis showed flake structure of peat clay with EDX which indicated composition of the dominant element namely the presence of Al, Si, and Fe before and after calcination. This high amount of minerals in peat clay led to potential source to be utilized as adsorbent for removing the pollutant or as and catalyst for chemical process.


2019 ◽  
Vol 969 ◽  
pp. 104-109
Author(s):  
S. Ramesh Kumar ◽  
S. Senthil Kumaran ◽  
G. Ramesh ◽  
M. Sree Arravind ◽  
D. Venkateswarlu

The study presents the results of the investigation on the effect of soaking time on the, Crystalline structure and morphological properties of annealed EN-47 Spring Steel. The EN-47 Spring Steel samples were heated at 860 °C for soaking times of 60, 120, 240, 480 minutes. SEM analysis and XRD analysis were carried out to determine the morphology and crystalline phase of the material with increasing soaking time. Interatomic Distances also decreased with increased in soaking time. The sample with the Soaking time of 480 minutes exhibits a higher Interatomic Distance because of Formation of bigger grains. Through X-ray Diffraction transformation of the crystalline structure were analyzed, in that it is observed that Iron did not undergo any crystalline structure transformation with respect to soaking time whereas other elements changed their structure. Keywords: EN-47, Annealing, XRD, Crystalline Structure, SEM.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012009
Author(s):  
R Nedjai ◽  
N A Kabbashi ◽  
M Z Alam ◽  
M F R Al-Khatib

Abstract Chemical agents have a good influence on the formation of activated carbons, surface characteristic, and its adsorption properties. In this study, the effect of activating agents (ZnCl2, KOH, and H3PO4) on baobab fruit shell (BFS) were evaluated. The characteristics of the baobab fruit shell based activated carbon (BF-ACs) were evaluated through the yield and iodine number. BF-ACs were also characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), and nitrogen (N2) adsorption. SEM analysis illustrates those porous structures formed on the surface of BF-ACs were with different sizes. The XRD analysis show that the main structures of BF-ACs are amorphous. FT-IR data demonstrates the presence of different surface groups on the produced BF-ACs. Among activating agent, the KOH was observed to the most appropriate for the production of activated carbon with a large surface area (1029.44 m2/g) from baobab fruit shell.


2021 ◽  
Vol 9 (1) ◽  
pp. 23-32
Author(s):  
Putri Mekar Insani S ◽  
◽  
Rahmatsyah Rahmatsyah ◽  

Characterization of material on cockle shell has been wiped out the shells hills of the Bendahara district of Aceh Tamiang district, with the aim of knowing the basic content and diffraction patterns of the cockle shell to plain CaCO3 aragonite. The research method begins with sampling the cockle shell from the Kerang hill. Firstly, preparation cockle shell. Then, characterized by X-Ray Fluorescence (XRF) examining to work out the basic content within the cockle shell, then doing Scanning Microscopy Energy Dispersive X-Ray (SEM-EDX), and X-ray diffraction ( XRD) testing. The characterization leads to XRF testing showed that the content of the constituent elements of the CaCO3 compound was dominated by CaO of 98.93% at station I and at station II, CaO was obtained the maximum amount as 98.73%. In SEM analysis, the cockle shell have a rod-like morphological structure within the sort of aragonite crystals. The results of EDX at station I, obtained CaO elements is 58.18% and at station II CaO is 36.76%. The results of XRD analysis, the cockle shell have an aragonite phase with an orthorombic crystal structure. the very best phase that appears at 2θ at station I is 26,220, and station II is 26,280.


2014 ◽  
Vol 925 ◽  
pp. 248-252 ◽  
Author(s):  
Robabeh Bashiri ◽  
Muti Mohamed Norani ◽  
Chong Fai Kait ◽  
Suriati Sufian

Titania (TiO2) as a semiconductor has been intensively studied during the last decades. Regardless of its superior photocatalytic performance and extensive environmental applications, it has a wide bandgap which lead to a photocatalytic activity only in ultraviolet (UV) irradiation. To shift the activity of TiO2 to visible region, a series of monometallic and bimetallic doped TiO2 was prepared with 10wt% total metals loading. The photocatalysts were synthesized by sol-gel associated via hydrothermal method. The properties of the photocatalysts such as crystal size, surface morphology, total surface area, chemical state of the elements, and bandgap were investigated by using thermogravimetric analysis (TGA), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and BrunauerEmmettTeller (BET) measurement. XRD analysis showed that all samples displayed anatase (101) as a main phase of TiO2 with average crystal size between 10-16 nm in a good agreement with the TEM results. The FESEM images show spherical particles less than 20 nm in size. The BET results indicated that all samples are mesoporous. The band gap of Ni-Cu/TiO2 is reduced to 2.65 eV with more absorbance in the visible region compared to those of cu/TiO2 and Ni/TiO2.


2012 ◽  
Vol 531-532 ◽  
pp. 254-257
Author(s):  
Sharifah Adzila ◽  
Iis Sopyan ◽  
Siti Farius ◽  
Nurfahana Wahab ◽  
Singh Ramesh

This work presents the wet mechanochemical synthesis of hydroxyapatite (HA) powder through two different milling mediums. The effect of milling mediums on powder properties was investigated. Two types of medium: water and ethanol were chosen with 370 rpm milling speed for 15 hours time. Characterization of synthesized powders was accomplished by X-ray diffraction (XRD) analysis. The green compacts were prepared and sintered in atmosphere condition at various temperatures ranging from 900oC - 1300oC. The mechanical and physical properties were evaluated under Vickers microhardness test and density measurement. Both of synthesis mediums yielded HA phases in the synthesized powders as detected by the peaks obtained in XRD analysis. Compacts synthesized in water medium (M1) showed a maximum density, 99% sintered at 1000oC and 1300oC. However, the hardness in water medium is closely similar to the ethanol medium as a function of sintering temperature where the maximum hardness was found in compacts synthesized in ethanol medium (M2) sintered at 1300oC (5.8GPa). The microstructure observed from SEM analysis was in line with the density obtained as the surface of sintered compacts synthesized in water medium (M1) contained less pores with large grain growth.


2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


Sign in / Sign up

Export Citation Format

Share Document