scholarly journals Analisis Pola Struktur Kalsium Karbonat (CaCO3) Pada Cangkang Kerang Darah (Anadara granosa) Di Bukit Kerang Kabupaten Aceh Tamiang

2021 ◽  
Vol 9 (1) ◽  
pp. 23-32
Author(s):  
Putri Mekar Insani S ◽  
◽  
Rahmatsyah Rahmatsyah ◽  

Characterization of material on cockle shell has been wiped out the shells hills of the Bendahara district of Aceh Tamiang district, with the aim of knowing the basic content and diffraction patterns of the cockle shell to plain CaCO3 aragonite. The research method begins with sampling the cockle shell from the Kerang hill. Firstly, preparation cockle shell. Then, characterized by X-Ray Fluorescence (XRF) examining to work out the basic content within the cockle shell, then doing Scanning Microscopy Energy Dispersive X-Ray (SEM-EDX), and X-ray diffraction ( XRD) testing. The characterization leads to XRF testing showed that the content of the constituent elements of the CaCO3 compound was dominated by CaO of 98.93% at station I and at station II, CaO was obtained the maximum amount as 98.73%. In SEM analysis, the cockle shell have a rod-like morphological structure within the sort of aragonite crystals. The results of EDX at station I, obtained CaO elements is 58.18% and at station II CaO is 36.76%. The results of XRD analysis, the cockle shell have an aragonite phase with an orthorombic crystal structure. the very best phase that appears at 2θ at station I is 26,220, and station II is 26,280.

Author(s):  
Priscila Richa ◽  
Roberto Costa Lima ◽  
Ana Paula Santiago de Falco ◽  
Ana Paula da Silva ◽  
Elvia Leal ◽  
...  

Radar-absorbing materials (RAMs) have been used in military applications for several decades to reduce radar detection of vessels and aircrafts. In the present work, the performance of Ni0.35Zn0.35Cu0.3Fe2O4 ferrite as a RAM is investigated. The ferrite was firstly synthesized by combustion reaction and then calcinated at 1200 °C for 1 h. Composites were prepared with 80:20, 70:30 and 60:40 concentrations in weight of ferrite:polychloroprene. The X-ray diffraction (XRD) analysis showed a single phase ferrite formation and the scanning electron microscopy (SEM) analysis of the composites showed a good dispersion of the ferrite in the polychloroprene matrix. The electromagnetic (EM) characterization of the composites revealed that the EM attenuation is mainly attributed to magnetic losses observed in the material. The 80:20 composite achieved the best performance and presented a reflectivity of -26.7 dB at 10.2 GHz.


2019 ◽  
Vol 280 ◽  
pp. 04003
Author(s):  
Agus Mirwan ◽  
Meilana Dharma Putra ◽  
Riani Ayu Lestari

The existence of peat clay is scattered in many parts of the world with the huge amount. The high compound of minerals in the peat clay can be potentially used as adsorbent and catalyst. This research aims to study the composition of peat clay and functional group of the compound in the peat clay. The characterization of x-ray fluorescence (XRF), fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and scanning electron microscope-energy dispersive x-ray (SEM- EDX) were assigned to compare the sample before and after calcination process at 700 oC 120 min. FTIR analysis showed the presence of quartz, kaolinite, hematite, illite in peat clay. The results of XRF analysis showed that chemical composition of peat clay was dominantly in the form of silica oxide (18%), aluminum oxide (7%), and iron oxide (15%). The amount of compounds was observed to increase to be 32%, 18% and 11%, respectively after calcinations. XRD analysis confirmed the presence of this mineral in the peat clay. SEM analysis showed flake structure of peat clay with EDX which indicated composition of the dominant element namely the presence of Al, Si, and Fe before and after calcination. This high amount of minerals in peat clay led to potential source to be utilized as adsorbent for removing the pollutant or as and catalyst for chemical process.


2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


2022 ◽  
Author(s):  
Sunita Kumari ◽  
Dhirendra Singhal ◽  
Rinku Walia ◽  
Ajay Rathee

Abstract The present project proposes to utilize rice husk and maize cob husk ash in the cement to mitigate the adverse impact of cement on environment and to enhance the disposal of waste in a sustainable manner. Ternary concrete / MR concrete was prepared by using rise husk and maize cob ash with cement. For the present project, five concrete mixes MR-0 (Control mix), MR-1 (Rice husk ash 10% and MR-2.5%), MR-2 (Rice husk ash 10% and MR-5%), MR-3 (Rice husk ash 10% and MR-2.5%), MR-4 (Rice husk ash 10% and MR-2.5%) were prepared. M35 concrete mix was designed as per IS 10262:2009 for low slump values 0-25mm. The purpose is to find the optimum replacement level of cement in M35 grade ternary concrete for I – Shaped paver blocks.In order to study the effects of these additions, micro-structural and structural properties test of concretes have been conducted. The crystalline properties of control mix and modified concrete are analyzed by Fourier Transform Infrared Spectroscope (FTIR), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). The results indicated that 10% Rice husk ash and 5% maize cob ash replaced with cement produce a desirable quality of ternary concrete mix having good compressive strength. The results of SEM analysis indicated that the morphology of both concrete were different, showing porous structure at 7 days age and become unsymmetrical with the addition of ashes. After 28 day age, the control mix contained more quantity of ettringite and became denser than ternary concrete. XRD analysis revealed the presence of portlandite in large quantity in controlled mix concrete while MR concrete had the partially hydrated particle of alite.


Author(s):  
Fikri Alatas ◽  
Fahmi Abdul Azizsidiq ◽  
Titta Hartyana Sutarna ◽  
Hestyari Ratih ◽  
Sundani Nurono Soewandhi

An effort to improve the solubility of albendazole (ABZ), an anthelmintic drug has been successfully carried out through the formation of multicomponent crystal with dl-malic acid (MAL). Construction of phase solubility curve of ABZ in MAL solution and crystal morphological observations after recrystallization in the acetone-ethanol (9:1) mixture were performed for initial prediction of multicomponent crystal formation. ABZ-MAL multicomponent crystal was prepared by wet grinding or also known as solvent-drop grinding (SDG) with acetone-ethanol (9:1) mixture as a solvent followed by characterization of the multicomponent crystal formation by powder X-ray diffraction and Fourier transform infrared (FTIR) methods. The solubility of ABZ-MAL multicomponent crystal was tested in water at ambient temperature and in pH 1.2, 4.5 and 6.8 of buffered solutions at 37°C. The phase solubility curve of the ABZ in the MAL solution showed type Bs. The ABZ-MAL mixture has a different crystalline morphology than pure ABZ and MAL after recrystallization in the acetone-ethanol mixture (9:1). The powder X-ray diffraction pattern and the FTIR spectrum of ABZ-MAL from SDG different from intact ABZ and MAL powder X-ray diffraction patterns and these results can indicate the ABZ-MAL multicomponent crystal formation. The ABZ-MAL multicomponent crystal has better solubility than pure ABZ in all media used. These results can be concluded that ABZ-MAL multicomponent crystal can be prepared by solvent-drop grinding method with acetone-ethanol (9:1) mixture as a solvent and can increase the solubility of albendazole.


2005 ◽  
Vol 03 (2) ◽  
pp. 24-29
Author(s):  
P.M. PIMENTEL ◽  
A.M.G. PEDROSA ◽  
H.K.S. SOUZA ◽  
C.N.S. JÚNIOR ◽  
R.C.A. PINTO ◽  
...  

Spinel oxides with the composition ZnCo2O4 and ZnCo2O4:Eu3+ have been synthesized by the Pechini method and characterized by X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. IR spectroscopy revealed the presence of n1 and n2 bands, typical of spinel structures. The formation of monophase cubic spinel structure was confirmed by X-ray diffraction patterns. Extra lines corresponding to other phase has been observed in the powders calcined at 900 ºC. The results showed the extremely lower synthesis temperature than those presents in conventional methods.


2018 ◽  
Vol 64 (4) ◽  
pp. 381
Author(s):  
Muhammad Tufiq Jamil ◽  
Javed Ahmad ◽  
Syed Hamad Bukhari ◽  
Murtaza Saleem

Rare earth nano sized pollycrystalline orthoferrites and orthocromites ReT mO3 (Re = La, Nd, Gd, Dy, Y and T m = Fe, Cr) have been synthesized by sol-gel auto combustion citrate method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy. The samples are single phase as confirmed by XRD analysis and correspond to the orthorhombic crystal symmetry with space group pbnm. Debye Scherer formula and Williamson Hall analysis have been used to calculate the average grain size which is consistent with that of determined from SEM analysis and varied between 25-75 nm. The elemental compositions of all samples have been checked by EDX analysis. Different crystallographic parameters are calculated with strong structural correlation among Re and Tm sites. The optical energy band gap has been calculated by using Tauc relation estimated to be in the range of 1.77 - 1.87 eV and 2.77 - 3.14 eV, for ReFeO3 and ReCrO3, respectively.


2004 ◽  
Vol 831 ◽  
Author(s):  
Phanikumar Konkapaka ◽  
Huaqiang Wu ◽  
Yuri Makarov ◽  
Michael G. Spencer

ABSTRACTBulk GaN crystals of dimensions 8.5 mm × 8.5 mm were grown at growth rates greater than 200μm/hr using Gallium Vapor Transport technique. GaN powder and Ammonia were used as the precursors for growing bulk GaN. Nitrogen is used as the carrier gas to transport the Ga vapor that was obtained from the decomposition of GaN powder. During the process, the source GaN powder was kept at 1155°C and the seed at 1180°C. Using this process, it was possible to achieve growth rates of above 200 microns/hr. The GaN layers thus obtained were characterized using X-Ray diffraction [XRD], scanning electron microscopy [SEM], and atomic force microscopy [AFM]. X-ray diffraction patterns showed that the grown GaN layers are single crystals oriented along c direction. AFM studies indicated that the dominant growth mode was dislocation mediated spiral growth. Electrical and Optical characterization were also performed on these samples. Hall mobility measurements indicated a mobility of 550 cm2/V.s and a carrier concentration of 6.67 × 1018/cm3


2015 ◽  
Vol 35 ◽  
pp. 21-26 ◽  
Author(s):  
Susmita Das ◽  
Vimal Chandra Srivastava

Metal oxide nanocomposite (ZnO-CuO) was successfully synthesized by one step homogeneous coprecipitation method and further characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), X-ray diffraction analysis (XRD) and UV-visible diffuse reflectance spectra. XRD analysis exhibited presence of pure copper oxide and zinc oxide within the nanocomposite. SEM analysis indicated that the ZnO-CuO nanocomposite was consisted of flower shaped ZnO along with leaf shaped CuO. Photocatalytic activity of nanocomposite was evaluated in terms of degradation of methylene blue (MB) dye solution under ultra-violet radiation. Results showed that the photocatalytic efficiency of ZnO-CuO nanocomposite was higher than its individual pure oxides (ZnO or CuO).


Author(s):  
M.T. Blatchford ◽  
A.J. Horlock ◽  
D.G. McCartney ◽  
P.H. Shipway ◽  
J.V. Wood

Abstract In this paper, the production of NiCr-TiC powder by SHS, suitable for HVOF spraying, is discussed together with results on the microstructure and coating properties. Compacts for SHS were prepared by mixing elemental Ti and C with pre-alloyed Ni-20wt.% Cr powder to give an overall composition of 35wt.% NiCr and 65wt.% TiC. These were then ignited and a self-sustaining reaction proceeded to completion. Reacted compacts were crushed, sieved, and classified to give feedstock powders in size ranges of 10-45 µm and 45-75 µm. All powder was characterized prior to spraying based on particle size distribution, x-ray diffraction (XRD), and scanning electron microscopy (SEM/EDS). Thermal spraying was performed using both H2 and C3H6 as fuel gases in a UTP/Miller Thermal HVOF system. The resulting coatings were characterized by SEM and XRD analysis, and the microstructures correlated with powder size and spray conditions. Abrasive wear was determined by a modified 'dry sand rubber wheel' (DSRW) test and wear rates were measured. It has been found that wear rates comparable to those of HVOF sprayed WC-17wt% Co coatings can be achieved.


Sign in / Sign up

Export Citation Format

Share Document