Optimasi Multirespon Gaya Tekan Dan Momen Torsi Pada Penggurdian Material Komposit Glass Fiber Reinforce Polymer (Gfrp) yang Ditumpuk Dengan Material Stainless Steel (SS) Menggunakan Metode Algoritma Genetika

2019 ◽  
Vol 9 (01) ◽  
pp. 1-5
Author(s):  
Angga Sateria

Glass fiber reinforced polymer (GFRP)-stainless steel stacks used in the aircraft structural components. The assembly process of this components requires mechanical joining using bolt and nut. The drilling process is commonly used for producing hole to position the bolt correctly. Thrust force and torque are responses that used to evaluate the performance of drilling process. The quality characteristic of these responses are “smaller-is-better.” The aim of this experiment is to identify the combination of process parameters for achieving required multiple performance characteristics in drilling process of GFRP-stainless steel stacks materials. The three important process parameters, i.e., point angle, spindle speed, and feed rate were used as input parameters. Point angle was set at two different levels, whilethe other two were set at three different levels. Hence, a 2 x 3 x 3 full factorial was used as designexperiments. The experiments were replicated two times. The optimization was conducted by using genetic algorithm method. The minimum thrust force and torque could be obtained by using point angle, spindle speed and feed rate of 118o, 2383 rpm, 62 mm/min respectively.

2019 ◽  
Vol 10 (01) ◽  
pp. 1-7
Author(s):  
Angga Sateria ◽  
Indra Dwi Saputra ◽  
Yuli Dharta

The Particle Swarm Optimization (PSO) method is one of the methods used for multirespon optimization in the manufacturing process. In this research, the material used is Glass fiber reinforced polymer (GFRP) composite material which is stacked with stainless steel material. The machining process used is a drilling process conducted on a vertical CNC machine Brother TC-22A-O. The thrust force and torque is the response used to evaluate the performance of the drilling process. The quality characteristics of this response "the smaller the better". The aim of this study was to identify the combination of process parameters to achieve the performance characteristics required in drilling process the GFRP-SS material using Particle Swarm Optimization methode (PSO). The three process parameters i.e. point angle, spindle speed, and feeding speed is used as a process parameter. Point angle was set at two different levels, while the other two were set at three different levels. Therefore, the 2 x 3 x 3 factorial is used as the experimental design. The experiments were replicated two times. The minimum thrust force and torque could be obtained by using point angle, spindle speed, and feeding speed are 118o, 2330 rpm, and 65 mm/minrespectively.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 854
Author(s):  
Muhammad Aamir ◽  
Khaled Giasin ◽  
Majid Tolouei-Rad ◽  
Israr Ud Din ◽  
Muhammad Imran Hanif ◽  
...  

Drilling is an important machining process in various manufacturing industries. High-quality holes are possible with the proper selection of tools and cutting parameters. This study investigates the effect of spindle speed, feed rate, and drill diameter on the generated thrust force, the formation of chips, post-machining tool condition, and hole quality. The hole surface defects and the top and bottom edge conditions were also investigated using scan electron microscopy. The drilling tests were carried out on AA2024-T3 alloy under a dry drilling environment using 6 and 10 mm uncoated carbide tools. Analysis of Variance was employed to further evaluate the influence of the input parameters on the analysed outputs. The results show that the thrust force was highly influenced by feed rate and drill size. The high spindle speed resulted in higher surface roughness, while the increase in the feed rate produced more burrs around the edges of the holes. Additionally, the burrs formed at the exit side of holes were larger than those formed at the entry side. The high drill size resulted in greater chip thickness and an increased built-up edge on the cutting tools.


2017 ◽  
Vol 748 ◽  
pp. 254-258
Author(s):  
Chang Yi Liu ◽  
Bai Shou Zhang ◽  
Suman Shrestha

Drilling experiments of titanium alloy Ti6Al4V were conducted. Taking the speed and feed as the process variables, a set of experimental cutting forces are obtained and compared. From the experimental results it is concluded that within the experimental extent the thrust force and torque of drilling process rises with the feed rate. The lower spindle speed resulted in the greater amount of thrust. Feed rates have greater influence on the thrust force than the spindle speed. The combination of greater feed rate and lower spindle speed results in the maximum amount of thrust. However, combination of greater feed rate and spindle speed resulted in maximum amount of torque.


2011 ◽  
Vol 188 ◽  
pp. 429-434 ◽  
Author(s):  
L.P. Yang ◽  
Li Xin Huang ◽  
Cheng Yong Wang ◽  
L.J. Zheng ◽  
Ping Ma ◽  
...  

Supported holes of Printed circuit board (PCB) are drilled with two different drill bits. Drilling force (thrust force and torque) and chip morphology are examined at different cutting parameters, and the effects of the two drills are discussed. The results indicate that the drilling force and chip morphology are affected by the feed rate, spindle speed and drill shape. Thrust force increases with the increasing feed rate, and decreases with the increasing spindle speed. Optimization of drill geometry can reduce the thrust force significantly, and is effective in chip breaking which can improve the chip evacuation during the drilling process.


2010 ◽  
Vol 638-642 ◽  
pp. 927-932 ◽  
Author(s):  
M.A. Azmir ◽  
Praveena Nair Sivasankaran ◽  
Z. Hamedon

This thesis deals with carbon fiber reinforced plastics (CFRP) composites, an advanced material which is widely used in manufacturing aircrafts because of their unique mechanical and physical properties. The research mainly involved drilling of CFRP. This study is focused on analyzing the thrust force and delamination against drilling parameters namely feed rate, spindle speed and type of tool materials. Also, the optimal parameters were chosen using an optimization method called D optimal. It was observed that the higher the feed rate and spindle speed employed, the higher the thrust force and delamination occur. The split point fibre (SPF) drill gave the lowest values of thrust force and delamination. Based on the optimal parameters, a verification test was conducted and the prediction error was 2.3% and 5.6% for thrust force and delamination respectively. This shows, that the optimal parameters obtained is reliable as it could improve the process considerably. The results of this study could be used as a reference for further research and studies on drilling of CFRP.


2020 ◽  
Vol 14 (1) ◽  
pp. 6295-6303
Author(s):  
Zaleha Mustafa ◽  
N. H. Idrus ◽  
A B. Mohd Hadzley ◽  
D. Sivakumar ◽  
M. Y. Norazlina ◽  
...  

This paper presents an investigation on the influence of the drilling parameters such as feed rate, spindle speed and drill tool diameter onto the delamination factor of the jute reinforced unsaturated polyester composite. Natural fibre based composite are mostly used for commodity application and often subjected to drilling during applications and may generate delamination of drilled holes on the workpiece. The composite was fabricated using woven jute fibre via vacuum bagging method followed a high temperature curing using hot press. The fibre was kept at 40 vol. %. The main effect and the interaction between the specified factors of feed rate (20-100mm/min), spindle speed (500-1500 rpm) and drill tool diameter (4-8 mm) with delamination factor as corresponding respond was structured via the Response Surface Methodology (RSM) based on three-level Box-Behnken design of experiment and the ANOVA. The levels of importance of the process parameters on flexural properties are determined by using Analysis of Variance (ANOVA). The optimised drilling process parameters obtained as 24.38 mm/min of feed rate, 1146.14 rpm of spindle speed and 5.51 mm drill tool diameter achieved the most minimal delamination factor. The feed rate and spindle speed were perceived as the most influential drilling parameters on the delamination factor of the jute reinforced unsaturated polyester composite.


2020 ◽  
Vol 26 ◽  
pp. 2333-2336
Author(s):  
Akshay Bhardwaj ◽  
Ashish Vats ◽  
Nakul Singh Rathour ◽  
Naveen Kumar ◽  
Nitin Johri ◽  
...  

Carbon Fiber Reinforced Polymer (CFRP) is extensively used in aircraft and automotive industries due to it exceptional material properties such as high strength to weight ratio and corrosion resistance. Nevertheless, micro drilling process of CFRP material poses various challenge as it has irregular material properties along the structure. High cutting force which lead to poor hole quality is one of the issues that always occur when drilling this material. Hence, the understanding on the relationship between process parameter and material behavior is vital to achieve optimum performance of machining process. The experiment was carried out using 2-level factorial design with variable spindle speed range of 8,000 – 12,000 rpm and feed rate range of 0.01-0.015 mm/rev. Micro drill bit with diameter of 0.9 mm was used and new fresh drill were used for every run to avoid tool wear effect. As a result, lower thrust force of 6.3742 N is obtained from the combination of spindle speed 10k rpm and feed rate 0.0125 N. Therefore, it can be concluded that, optimum parameter falls between the range of 8,000 – 12,000 rpm of spindle speed and 0.01-0.015 mm/rev of feed rate. Validation of the optimum parameter suggested from 2-level factorial which are 8,000 rpm and 0.01 mm/rev is executed. The final result obtained shows 4.5% of error from targeted value and this result is absolutely acceptable and portray the reliability of the experiment.


2021 ◽  
Vol 8 ◽  
pp. 2
Author(s):  
Chakaravarthy Ezilarasan ◽  
Meenaskshi Sundaram Nagaraj ◽  
A. John Presin Kumar ◽  
A. Velayudham ◽  
Rishab Betala

Nimonic C263 is a super alloy and it is difficult to cut. As this alloy possess high proportion of chromium, cobalt, and molybdenum, which fortify the material by solution hardening, which inhibits the dislocation movement, resulting in higher plastic deformation. In this research, an attempt has been made to model, analysis and investigate the machining characteristics such as thrust force, temperature at drill cutting edge, flank wear and surface finish during drilling of this alloy using silver nano fluid mixed Minimum Quantity Lubrication (MQL) environment. Residual stress at various combinations of process parameters was also observed and discussed. RSM based empirical models of the process parameters and optimization of multi response was developed. Thrust force, Temperature at drill cutting edge, surface roughness and tool wear affected by feed rate (percentage of contribution-60%), spindle speed (percentage of contribution-88.63%), spindle speed (percentage of contribution-71.42%) and feed rate (percentage of contribution-67.76%) respectively followed by other parameters.


Sign in / Sign up

Export Citation Format

Share Document