Experimental Study on Drilling Process of CFRP Composite Laminate

2010 ◽  
Vol 638-642 ◽  
pp. 927-932 ◽  
Author(s):  
M.A. Azmir ◽  
Praveena Nair Sivasankaran ◽  
Z. Hamedon

This thesis deals with carbon fiber reinforced plastics (CFRP) composites, an advanced material which is widely used in manufacturing aircrafts because of their unique mechanical and physical properties. The research mainly involved drilling of CFRP. This study is focused on analyzing the thrust force and delamination against drilling parameters namely feed rate, spindle speed and type of tool materials. Also, the optimal parameters were chosen using an optimization method called D optimal. It was observed that the higher the feed rate and spindle speed employed, the higher the thrust force and delamination occur. The split point fibre (SPF) drill gave the lowest values of thrust force and delamination. Based on the optimal parameters, a verification test was conducted and the prediction error was 2.3% and 5.6% for thrust force and delamination respectively. This shows, that the optimal parameters obtained is reliable as it could improve the process considerably. The results of this study could be used as a reference for further research and studies on drilling of CFRP.

2015 ◽  
Vol 29 (10n11) ◽  
pp. 1540031 ◽  
Author(s):  
Cheng-Dong Wang ◽  
Kun-Xian Qiu ◽  
Ming Chen ◽  
Xiao-Jiang Cai

Carbon Fiber Reinforced Plastic (CFRP) composite laminates are widely used in aerospace and aircraft structural components due to their superior properties. However, they are regarded as difficult-to-cut materials because of bad surface quality and low productivity. Drilling is the most common hole making process for CFRP composite laminates and drilling induced delamination damage usually occurs severely at the exit side of drilling holes, which strongly deteriorate holes quality. In this work, the candle stick drill and multi-facet drill are employed to evaluate the machinability of drilling T700/LT-03A CFRP composite laminates in terms of thrust force, delamination, holes diameter and holes surface roughness. S/N ratio is used to characterize the thrust force while an ellipse-shaped delamination model is established to quantitatively analyze the delamination. The best combination of drilling parameters are determined by full consideration of S/N ratios of thrust force and the delamination. The results indicate that candle stick drill will induce the unexpected ellipse-shaped delamination even at its best drilling parameters of spindle speed of 10,000 rpm and feed rate of 0.004 mm/tooth. However, the multi-facet drill cutting at the relative lower feed rate of 0.004 mm/tooth and lower spindle speed of 6000 rpm can effectively prevent the delamination. Comprehensively, holes quality obtained by multi-facet drill is much more superior to those obtained by candle stick drill.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 854
Author(s):  
Muhammad Aamir ◽  
Khaled Giasin ◽  
Majid Tolouei-Rad ◽  
Israr Ud Din ◽  
Muhammad Imran Hanif ◽  
...  

Drilling is an important machining process in various manufacturing industries. High-quality holes are possible with the proper selection of tools and cutting parameters. This study investigates the effect of spindle speed, feed rate, and drill diameter on the generated thrust force, the formation of chips, post-machining tool condition, and hole quality. The hole surface defects and the top and bottom edge conditions were also investigated using scan electron microscopy. The drilling tests were carried out on AA2024-T3 alloy under a dry drilling environment using 6 and 10 mm uncoated carbide tools. Analysis of Variance was employed to further evaluate the influence of the input parameters on the analysed outputs. The results show that the thrust force was highly influenced by feed rate and drill size. The high spindle speed resulted in higher surface roughness, while the increase in the feed rate produced more burrs around the edges of the holes. Additionally, the burrs formed at the exit side of holes were larger than those formed at the entry side. The high drill size resulted in greater chip thickness and an increased built-up edge on the cutting tools.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Fang ◽  
Ze-Min Pan ◽  
Bing Han ◽  
Shao-Hua Fei ◽  
Guan-Hua Xu ◽  
...  

Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti) stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm) before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.


2017 ◽  
Vol 748 ◽  
pp. 254-258
Author(s):  
Chang Yi Liu ◽  
Bai Shou Zhang ◽  
Suman Shrestha

Drilling experiments of titanium alloy Ti6Al4V were conducted. Taking the speed and feed as the process variables, a set of experimental cutting forces are obtained and compared. From the experimental results it is concluded that within the experimental extent the thrust force and torque of drilling process rises with the feed rate. The lower spindle speed resulted in the greater amount of thrust. Feed rates have greater influence on the thrust force than the spindle speed. The combination of greater feed rate and lower spindle speed results in the maximum amount of thrust. However, combination of greater feed rate and spindle speed resulted in maximum amount of torque.


2011 ◽  
Vol 188 ◽  
pp. 429-434 ◽  
Author(s):  
L.P. Yang ◽  
Li Xin Huang ◽  
Cheng Yong Wang ◽  
L.J. Zheng ◽  
Ping Ma ◽  
...  

Supported holes of Printed circuit board (PCB) are drilled with two different drill bits. Drilling force (thrust force and torque) and chip morphology are examined at different cutting parameters, and the effects of the two drills are discussed. The results indicate that the drilling force and chip morphology are affected by the feed rate, spindle speed and drill shape. Thrust force increases with the increasing feed rate, and decreases with the increasing spindle speed. Optimization of drill geometry can reduce the thrust force significantly, and is effective in chip breaking which can improve the chip evacuation during the drilling process.


2019 ◽  
Vol 9 (01) ◽  
pp. 1-5
Author(s):  
Angga Sateria

Glass fiber reinforced polymer (GFRP)-stainless steel stacks used in the aircraft structural components. The assembly process of this components requires mechanical joining using bolt and nut. The drilling process is commonly used for producing hole to position the bolt correctly. Thrust force and torque are responses that used to evaluate the performance of drilling process. The quality characteristic of these responses are “smaller-is-better.” The aim of this experiment is to identify the combination of process parameters for achieving required multiple performance characteristics in drilling process of GFRP-stainless steel stacks materials. The three important process parameters, i.e., point angle, spindle speed, and feed rate were used as input parameters. Point angle was set at two different levels, whilethe other two were set at three different levels. Hence, a 2 x 3 x 3 full factorial was used as designexperiments. The experiments were replicated two times. The optimization was conducted by using genetic algorithm method. The minimum thrust force and torque could be obtained by using point angle, spindle speed and feed rate of 118o, 2383 rpm, 62 mm/min respectively.


2021 ◽  
Author(s):  
Amin Moghaddas

Abstract In this study, a special resolution V design and Response surface methodology (RSM) were used to characterize the ultrasonic-assisted drilling (UAD) process of Aluminum 6061. This characterization was done through developing mathematical models to study the effect of ultrasonic and drilling parameters including spindle speed, feed rate and amplitude on thrust force, temperature, chip morphology and power. The tests were done using an industrially hardened non-rotating UAD system mounted in a CNC turning center. The analysis of variance (ANOVA) was used to find significant parameters of thrust force, temperature, chip morphology and power. Then, for all responses, the optimum drilling parameters that provide desired solutions for all responses were obtained. This was followed by out-of-sample testing to verify the accuracy of the developed models. The results of this study showed that in UAD of aluminum, the minimum values of thrust force and chip size were obtained at low spindle speed, low feed rate and high amplitude. The results also showed that amplitude was not a significant parameter affecting the tool temperature and cannot be used to analyze the effect of ultrasonic vibrations on generated heat during UAD. Instead, the interaction of amplitude and feed rate was significant and should be considered in the analysis. Finally, minimum consumed power, specially at higher amplitudes, can be obtained using high spindle speed and low feed rate.


2014 ◽  
Vol 66 (3) ◽  
Author(s):  
Mohd Amran ◽  
Siti Salmah ◽  
Mohd Sanusi ◽  
Mohd Yuhazri ◽  
Noraiham Mohamad ◽  
...  

This paper presents the effect of drilling parameters on surface roughness and surface appearance by applying response surface method (RSM). The mathematical model for correlating the interactions of drilling parameters such as spindle speed, feed rate and drill diameter on surface roughness was developed. RSM methodology was used as it is a technique that most practical and effective way to develop a mathematical model. In addition, this method also can reduce trial and error in experiment. Since the number of factors are three; spindle speed, feed rate and drill diameter, by applying RSM the total numbers of experiment involved are 20 experimental observations. From the experimental result, it is found that the minimum surface roughness on the hole was 1.06 mm from combination of 2000 rpm spindle speed, 78 mm/min feed rate and 2.5 mm drill diameter. While the maximum surface roughness 2.59 mm was the combination of 250 rpm spindle speed, 153 mm/min feed rate and 3.5 mm drill diameter. A mathematical equation was developed with percentage of error are 0% to 29%. Thus, from the result we understand that to find the smooth surface in drilling process, it needs higher spindle speed with lower feed rate and smaller diameter.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 891
Author(s):  
Numan Habib ◽  
Aamer Sharif ◽  
Aqib Hussain ◽  
Muhammad Aamir ◽  
Khaled Giasin ◽  
...  

Millions of holes are produced in many industries where efficient drilling is considered the key factor in their success. High-quality holes are possible with the proper selection of drilling process parameters, appropriate tools, and machine setup. This paper deals with the effects of drilling parameters such as spindle speed and feed rate on the chips analysis and the hole quality like surface roughness, hole size, circularity, and burr formation. Al7075-T6 alloy, commonly used in the aerospace industry, was used for the drilling process, and the dry drilling experiments were performed using high-speed steel drill bits. Results have shown that surface roughness decreased with the increase in spindle speed and increased with the increase in the feed rate. The hole size increased with the high spindle speed, whereas the impact of spindle speed on circularity error was found insignificant. Furthermore, short and segmented chips were achieved at a high feed rate and low spindle speed. The percentage contribution of each input parameter on the output drilling parameters was evaluated using analysis of variance (ANOVA).


2020 ◽  
Vol 14 (1) ◽  
pp. 6295-6303
Author(s):  
Zaleha Mustafa ◽  
N. H. Idrus ◽  
A B. Mohd Hadzley ◽  
D. Sivakumar ◽  
M. Y. Norazlina ◽  
...  

This paper presents an investigation on the influence of the drilling parameters such as feed rate, spindle speed and drill tool diameter onto the delamination factor of the jute reinforced unsaturated polyester composite. Natural fibre based composite are mostly used for commodity application and often subjected to drilling during applications and may generate delamination of drilled holes on the workpiece. The composite was fabricated using woven jute fibre via vacuum bagging method followed a high temperature curing using hot press. The fibre was kept at 40 vol. %. The main effect and the interaction between the specified factors of feed rate (20-100mm/min), spindle speed (500-1500 rpm) and drill tool diameter (4-8 mm) with delamination factor as corresponding respond was structured via the Response Surface Methodology (RSM) based on three-level Box-Behnken design of experiment and the ANOVA. The levels of importance of the process parameters on flexural properties are determined by using Analysis of Variance (ANOVA). The optimised drilling process parameters obtained as 24.38 mm/min of feed rate, 1146.14 rpm of spindle speed and 5.51 mm drill tool diameter achieved the most minimal delamination factor. The feed rate and spindle speed were perceived as the most influential drilling parameters on the delamination factor of the jute reinforced unsaturated polyester composite.


Sign in / Sign up

Export Citation Format

Share Document