scholarly journals First abundance estimate for white whales Delphinapterus leucas in Svalbard, Norway

2020 ◽  
Vol 41 ◽  
pp. 253-263
Author(s):  
J Vacquié-Garcia ◽  
C Lydersen ◽  
TA Marques ◽  
M Andersen ◽  
KM Kovacs

The Svalbard Archipelago (Norway) is experiencing rapid declines in the seasonal duration and extent of sea-ice cover, and local tidewater glaciers are melting. These environmental changes represent a threat to ice-associated species in the region, including white whales Delphinapterus leucas. However, no estimates of stock size or trends are available for this stock. An aerial survey was conducted during the summer of 2018, covering the coastlines of all major islands in Svalbard, as well fjords and open ocean areas. A total count was attempted for the coastlines, while coverage of the fjords and open ocean areas was designed as distance-sampling line transects. In total, 265 white whales were detected in 22 groups along the 4965 km of coastline coverage. No whales were observed on fjord (1481 km) or open ocean transects (535 km). After correcting for surface availability using behavioural data from the same area (in summer) and making adjustments for small areas not flown during the survey, the stock size was estimated to be 549 individuals (95% CI: 436%%CONV_ERR%%723). This estimate is surprisingly low given that this species is one of the most frequently observed cetaceans in the area, but it confirms suspicions based on difficulties in finding animals when operating white whale tagging programmes over the past decade. This first population estimate is important in the context of the rapid environmental change taking place in the Arctic and for providing a baseline for comparison with future estimates.

2021 ◽  
pp. 137-142
Author(s):  
Klaus Dodds ◽  
Jamie Woodward

‘Arctic futures’ discusses the future of the Arctic that starts in the Norwegian territory of Svalbard wherein the Global Seed Vault functions as an Arctic sanctuary for the genetic diversity of crops. The Svalbard archipelago is a hotspot of Arctic amplification as rapid warming has been keenly felt by the small community. However, the environmental changes, no matter how stark and widespread, will not dampen interest in economic development and strategic posturing. Arctic states and northern peoples remain eager to improve their social and economic conditions as well as adapt to ongoing climate change. The Arctic is a haven of international peace and cooperation as the Arctic Council is cited as a governance model that others could emulate.


2019 ◽  
Vol 15 (3) ◽  
pp. 20180834 ◽  
Author(s):  
Charmain D. Hamilton ◽  
Jade Vacquié-Garcia ◽  
Kit M. Kovacs ◽  
Rolf A. Ims ◽  
Jack Kohler ◽  
...  

Global warming is inducing major environmental changes in the Arctic. These changes will differentially affect species owing to differences in climate sensitivity and behavioural plasticity. Arctic endemic marine mammals are expected to be impacted significantly by ongoing changes in their key habitats owing to their long life cycles and dependence on ice. Herein, unique biotelemetry datasets for ringed seals (RS; Pusa hispida ) and white whales (WW; Delphinapterus leucas ) from Svalbard, Norway, spanning two decades (1995–2016) are used to investigate how these species have responded to reduced sea-ice cover and increased Atlantic water influxes. Tidal glacier fronts were traditionally important foraging areas for both species. Following a period with dramatic environmental change, RS now spend significantly more time near tidal glaciers, where Arctic prey presumably still concentrate. Conversely, WW spend significantly less time near tidal glacier fronts and display spatial patterns that suggest that they are foraging on Atlantic fishes that are new to the region. Differences in levels of dietary specialization and overall behavioural plasticity are likely reasons for similar environmental pressures affecting these species differently. Climate change adjustments through behavioural plasticity will be vital for species survival in the Arctic, given the rapidity of change and limited dispersal options.


2019 ◽  
Author(s):  
Tomasz Wawrzyniak ◽  
Marzena Osuch

Abstract. The article presents the climatological dataset from the Polish Polar Station Hornsund located in the SW part of Spitsbergen - the biggest island of the Svalbard Archipelago. Due to a general lack of long-term in situ measurements and observations, the high Arctic remains one of the largest climate‐data deficient regions on the Earth, so described series is of unique value. To draw conclusions on the climatic changes in the Arctic, it is necessary to analyse the long-term series of continuous, systematic, in situ observations from different locations and comparing the corresponding data, rather than rely on the climatic simulations only. In recent decades, rapid environmental changes occurring in the Atlantic sector of the Arctic are reflected in the data series collected by the operational monitoring conducted at the Hornsund Station. We demonstrate the results of the 40 years-long series of observations. Climatological mean values or totals are given, and we also examined the variability of meteorological variables at monthly and annual scale using the modified Mann-Kendall test for trend and Sen’s method. The relevant daily, monthly, and annual data are provided on the PANGAEA repository (https://doi.org/10.1594/PANGAEA.909042, Wawrzyniak and Osuch, 2019).


2020 ◽  
Vol 12 (2) ◽  
pp. 805-815 ◽  
Author(s):  
Tomasz Wawrzyniak ◽  
Marzena Osuch

Abstract. The article presents the climatological dataset from the Polish Polar Station Hornsund located in the southwest part of Spitsbergen – the biggest island of the Svalbard archipelago. Due to a general lack of long-term in situ measurements and observations, the High Arctic remains one of the largest climate-data-deficient regions on the Earth. Therefore, the described time series of observations in this paper are of unique value. To draw conclusions on the climatic changes in the Arctic, it is necessary to analyse and compare the long-term series of continuous, in situ observations from different locations, rather than relying on the climatic simulations only. In recent decades, rapid environmental changes occurring in the Atlantic sector of the Arctic are reflected in the data series collected by the operational monitoring conducted at the Hornsund station. We demonstrate the results of the 40-year-long series of observations. Climatological mean values or totals are given, and we also examined the variability of meteorological variables at monthly and annual scale using the modified Mann–Kendall test for trend and Sen's method. The relevant daily, monthly, and annual data are provided on the PANGAEA repository (https://doi.org/10.1594/PANGAEA.909042, Wawrzyniak and Osuch, 2019).


ARCTIC ◽  
2017 ◽  
Vol 70 (3) ◽  
pp. 273 ◽  
Author(s):  
Lloyd F. Lowry ◽  
Michael C.S. Kingsley ◽  
Donna D.W. Hauser ◽  
Janet Clarke ◽  
Robert Suydam

The eastern Chukchi Sea (ECS) stock of beluga whales is one of three stocks in western Alaska that are co-managed by the National Marine Fisheries Service and the Alaska Beluga Whale Committee. Abundance of this stock was estimated as 3710 in 1991 from incomplete data. Analysis of data from satellite-linked time-depth recorders (SDRs) attached to belugas in summer concentration areas of the ECS and Beaufort Sea (BS) stocks provided an overview of beluga distribution and movements and allowed the identification of an area (140˚ W to 157˚ W in the BS) and a time period (19 July – 20 August) in which the distributions of the two stocks do not overlap. Aerial survey data were collected by the Aerial Surveys of Arctic Marine Mammals (ASAMM) project in that region and time period in 2012. We used those data in a line transect analysis that estimated there were 5547 (CV = 0.22) surface-visible belugas in the study area. Data from SDRs were used to develop correction factors to account for animals that were missed because they were either outside of the study area or diving too deep to be seen, resulting in a total abundance estimate of 20 752 (CV = 0.70). The average annual Alaska Native subsistence harvest from the ECS stock (57) is about 0.3% of the population estimate. Without data collected by the ASAMM project and from satellite-linked tags, this analysis would not have been possible. Additional surveys and tagging of ECS belugas are warranted.


Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 323
Author(s):  
Anna Seniczak ◽  
Stanisław Seniczak ◽  
Marla D. Schwarzfeld ◽  
Stephen J. Coulson ◽  
Dariusz J. Gwiazdowicz

Svalbard is a singular region to study biodiversity. Located at a high latitude and geographically isolated, the archipelago possesses widely varying environmental conditions and unique flora and fauna communities. It is also here where particularly rapid environmental changes are occurring, having amongst the fastest increases in mean air temperature in the Arctic. One of the most common and species-rich invertebrate groups in Svalbard is the mites (Acari). We here describe the characteristics of the Svalbard acarofauna, and, as a baseline, an updated inventory of 178 species (one Ixodida, 36 Mesostigmata, 43 Trombidiformes, and 98 Sarcoptiformes) along with their occurrences. In contrast to the Trombidiformes and Sarcoptiformes, which are dominated in Svalbard by species with wide geographical distributions, the Mesostigmata include many Arctic species (39%); it would thus be an interesting future study to determine if mesostigmatid communities are more affected by global warming then other mite groups. A large number of new species (42 spp.) have been described from Svalbard, including 15 that have so far been found exclusively there. It is yet uncertain if any of these latter species are endemic: six are recent findings, the others are old records and, in most cases, impossible to verify. That the Arctic is still insufficiently sampled also limits conclusions concerning endemicity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jang-Mu Heo ◽  
Seong-Su Kim ◽  
Sung-Ho Kang ◽  
Eun Jin Yang ◽  
Ki-Tae Park ◽  
...  

AbstractThe western Arctic Ocean (WAO) has experienced increased heat transport into the region, sea-ice reduction, and changes to the WAO nitrous oxide (N2O) cycles from greenhouse gases. We investigated WAO N2O dynamics through an intensive and precise N2O survey during the open-water season of summer 2017. The effects of physical processes (i.e., solubility and advection) were dominant in both the surface (0–50 m) and deep layers (200–2200 m) of the northern Chukchi Sea with an under-saturation of N2O. By contrast, both the surface layer (0–50 m) of the southern Chukchi Sea and the intermediate (50–200 m) layer of the northern Chukchi Sea were significantly influenced by biogeochemically derived N2O production (i.e., through nitrification), with N2O over-saturation. During summer 2017, the southern region acted as a source of atmospheric N2O (mean: + 2.3 ± 2.7 μmol N2O m−2 day−1), whereas the northern region acted as a sink (mean − 1.3 ± 1.5 μmol N2O m−2 day−1). If Arctic environmental changes continue to accelerate and consequently drive the productivity of the Arctic Ocean, the WAO may become a N2O “hot spot”, and therefore, a key region requiring continued observations to both understand N2O dynamics and possibly predict their future changes.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 229
Author(s):  
Young Eun Du ◽  
Eun Seo Bae ◽  
Yeonjung Lim ◽  
Jang-Cheon Cho ◽  
Sang-Jip Nam ◽  
...  

Two new secondary metabolites, svalbamides A (1) and B (2), were isolated from a culture extract of Paenibacillus sp. SVB7 that was isolated from surface sediment from a core (HH17-1085) taken in the Svalbard archipelago in the Arctic Ocean. The combinational analysis of HR-MS and NMR spectroscopic data revealed the structures of 1 and 2 as being lipopeptides bearing 3-amino-2-pyrrolidinone, d-valine, and 3-hydroxy-8-methyldecanoic acid. The absolute configurations of the amino acid residues in svalbamides A and B were determined using the advanced Marfey’s method, in which the hydrolysates of 1 and 2 were derivatized with l- and d- forms of 1-fluoro-2,4-dinitrophenyl-5-alanine amide (FDAA). The absolute configurations of 1 and 2 were completely assigned by deducing the stereochemistry of 3-hydroxy-8-methyldecanoic acid based on DP4 calculations. Svalbamides A and B induced quinone reductase activity in Hepa1c1c7 murine hepatoma cells, indicating that they represent chemotypes with a potential for functioning as chemopreventive agents.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 40
Author(s):  
Evgeny Genelt-Yanovskiy ◽  
Yixuan Li ◽  
Ekaterina Stratanenko ◽  
Natalia Zhuravleva ◽  
Natalia Strelkova ◽  
...  

Ophiura sarsii is a common brittle star species across the Arctic and Sub-Arctic regions of the Atlantic and the Pacific oceans. Ophiurasarsii is among the dominant echinoderms in the Barents Sea. We studied the genetic diversity of O.sarsii by sequencing the 548 bp fragment of the mitochondrial COI gene. Ophiurasarsii demonstrated high genetic diversity in the Barents Sea. Both major Atlantic mtDNA lineages were present in the Barents Sea and were evenly distributed between the northern waters around Svalbard archipelago and the southern part near Murmansk coast of Kola Peninsula. Both regions, and other parts of the O.sarsii range, were characterized by high haplotype diversity with a significant number of private haplotypes being mostly satellites to the two dominant haplotypes, each belonging to a different mtDNA clade. Demographic analyses indicated that the demographic and spatial expansion of O.sarsii in the Barents Sea most plausibly has started in the Bølling–Allerød interstadial during the deglaciation of the western margin of the Barents Sea.


2008 ◽  
Vol 8 (11) ◽  
pp. 2847-2857 ◽  
Author(s):  
J. W. Krzyścin ◽  
J. L. Borkowski

Abstract. The total ozone data over Europe are available for only few ground-based stations in the pre-satellite era disallowing examination of the spatial trend variability over the whole continent. A need of having gridded ozone data for a trend analysis and input to radiative transfer models stimulated a reconstruction of the daily ozone values since January 1950. Description of the reconstruction model and its validation were a subject of our previous paper. The data base used was built within the objectives of the COST action 726 "Long-term changes and climatology of UV radiation over Europe". Here we focus on trend analyses. The long-term variability of total ozone is discussed using results of a flexible trend model applied to the reconstructed total ozone data for the period 1950–2004. The trend pattern, which comprises both anthropogenic and "natural" component, is not a priori assumed but it comes from a smooth curve fit to the zonal monthly means and monthly grid values. The ozone long-term changes are calculated separately for cold (October–next year April) and warm (May–September) seasons. The confidence intervals for the estimated ozone changes are derived by the block bootstrapping. The statistically significant negative trends are found almost over the whole Europe only in the period 1985–1994. Negative trends up to −3% per decade appeared over small areas in earlier periods when the anthropogenic forcing on the ozone layer was weak . The statistically positive trends are found only during warm seasons 1995–2004 over Svalbard archipelago. The reduction of ozone level in 2004 relative to that before the satellite era is not dramatic, i.e., up to ~−5% and ~−3.5% in the cold and warm subperiod, respectively. Present ozone level is still depleted over many popular resorts in southern Europe and northern Africa. For high latitude regions the trend overturning could be inferred in last decade (1995–2004) as the ozone depleted areas are not found there in 2004 in spite of substantial ozone depletion in the period 1985–1994.


Sign in / Sign up

Export Citation Format

Share Document