Ecogeography of Plumage Pigmentation In Great Horned Owls

Author(s):  
Peter M. Mattison ◽  
Christopher C. Witt

ABSTRACT Plumage pigmentation is fundamental to a bird's phenotype, with pigment deposition causing relative crypsis or conspicuousness, depending on the environmental context. Geographic variation in plumage melanin tends to be predictable, suggesting that aspects of climate cause local matching of plumage to environment via genetic adaptation. Ecogeographic rules describe this predictability: Gloger's rule predicts that populations in wetter and warmer environments will be more pigmented; Bogert's Rule predicts more pigmentation in cold environments. The Great Horned Owl (Bubo virginianus) exhibits extensive geographic variation in the degree of melanin-based pigmentation. We examined fine-scale spatial variation in owl plumage melanism along environmental gradients in southwestern North America. We tested whether variation is explained by either of two non-mutually exclusive hypotheses: (1) a history of allopatric divergence between subspecies or (2) in situ local adaptation consistent with ecogeographic rules. The allopatric divergence hypothesis predicts a bimodal distribution of plumage melanism, with a geographic cline across a zone of secondary contact, whereas the local adaptation hypothesis predicts that climate explains variation independently of geography. Using a colorimeter, we measured coloration in 101 museum specimens of breeding-season Great Horned Owls that had been obtained from variable environments and elevations. Specimens previously identified as separate subspecies were distinguishable by colorimetry. Plumage lightness, however, was continuously distributed, rather than bimodal. While accounting for males having reduced pigmentation relative to females, linear models revealed that lighter plumage was associated with low latitude, low elevation, high temperature, and low precipitation. These findings suggest that variation in Great Horned Owl plumage pigmentation is best understood as continuous ecogeographic variation, consistent with ecogeographic predictions, and currently maintained in situ along multiple environmental gradients that characterize the “sky island” topography of the southwestern USA.

2020 ◽  
Author(s):  
Katherine M. Eaton ◽  
Moisés A. Bernal ◽  
Nathan J.C. Backenstose ◽  
Trevor J. Krabbenhoft

AbstractLocal adaptation can drive diversification of closely related species across environmental gradients and promote convergence of distantly related taxa that experience similar conditions. We examined a potential case of adaptation to novel visual environments in a species flock (Great Lakes salmonids, genus Coregonus) using a new amplicon genotyping protocol on the Oxford Nanopore Flongle. Five visual opsin genes were amplified for individuals of C. artedi, C. hoyi, C. kiyi, and C. zenithicus. Comparisons revealed species-specific differences in the coding sequence of rhodopsin (Tyr261Phe substitution), suggesting local adaptation by C. kiyi to the blue-shifted depths of Lake Superior. Parallel evolution and “toggling” at this amino acid residue has occurred several times across the fish tree of life, resulting in identical changes to the visual systems of distantly related taxa across replicated environmental gradients. Our results suggest that ecological differences and local adaptation to distinct visual environments are strong drivers of both evolutionary parallelism and diversification.


2021 ◽  
Vol 8 ◽  
Author(s):  
Peter von Dassow ◽  
Paula Valentina Muñoz Farías ◽  
Sarah Pinon ◽  
Esther Velasco-Senovilla ◽  
Simon Anguita-Salinas

The cosmopolitan phytoplankter Emiliania huxleyi contrasts with its closest relatives that are restricted to narrower latitudinal bands, making it interesting for exploring how alternative outcomes in phytoplankton range distributions arise. Mitochondrial and chloroplast haplogroups within E. huxleyi are shared with their closest relatives: Some E. huxleyi share organelle haplogroups with Gephyrocapsa parvula and G. ericsonii which inhabit lower latitudes, while other E. huxleyi share organelle haplogroups with G. muellerae, which inhabit high latitudes. We investigated whether the phylogeny of E. huxleyi organelles reflects environmental gradients, focusing on the Southeast Pacific where the different haplogroups and species co-occur. There was a high congruence between mitochondrial and chloroplast haplogroups within E. huxleyi. Haplogroup II of E. huxleyi is negatively associated with cooler less saline waters, compared to haplogroup I, both when analyzed globally and across temporal variability at the small special scale of a center of coastal upwelling at 30° S. A new mitochondrial haplogroup Ib detected in coastal Chile was associated with warmer waters. In an experiment focused on inter-species comparisons, laboratory-determined thermal reaction norms were consistent with latitudinal/thermal distributions of species, with G. oceanica exhibiting warm thermal optima and tolerance and G. muellerae exhibiting cooler thermal optima and tolerances. Emiliania huxleyi haplogroups I and II tended to exhibit a wider thermal niche compared to the other Gephyrocapsa, but no differences among haplogroups within E. huxleyi were found. A second experiment, controlling for local adaptation and time in culture, found a significant difference between E. huxleyi haplogroups. The difference between I and II was of the expected sign, but not the difference between I and Ib. The differences were small (≤1°C) compared to differences reported previously within E. huxleyi by local adaptation and even in-culture evolution. Haplogroup Ib showed a narrower thermal niche. The cosmopolitanism of E. huxleyi might result from both wide-spread generalist phenotypes and specialist phenotypes, as well as a capacity for local adaptation. Thermal reaction norm differences can well explain the species distributions but poorly explain distributions among mitochondrial haplogroups within E. huxleyi. Perhaps organelle haplogroup distributions reflect historical rather than selective processes.


2020 ◽  
Vol 117 (30) ◽  
pp. 17482-17490 ◽  
Author(s):  
Mark C. Urban ◽  
Sharon Y. Strauss ◽  
Fanie Pelletier ◽  
Eric P. Palkovacs ◽  
Mathew A. Leibold ◽  
...  

Historically, many biologists assumed that evolution and ecology acted independently because evolution occurred over distances too great to influence most ecological patterns. Today, evidence indicates that evolution can operate over a range of spatial scales, including fine spatial scales. Thus, evolutionary divergence across space might frequently interact with the mechanisms that also determine spatial ecological patterns. Here, we synthesize insights from 500 eco-evolutionary studies and develop a predictive framework that seeks to understand whether and when evolution amplifies, dampens, or creates ecological patterns. We demonstrate that local adaptation can alter everything from spatial variation in population abundances to ecosystem properties. We uncover 14 mechanisms that can mediate the outcome of evolution on spatial ecological patterns. Sometimes, evolution amplifies environmental variation, especially when selection enhances resource uptake or patch selection. The local evolution of foundation or keystone species can create ecological patterns where none existed originally. However, most often, we find that evolution dampens existing environmental gradients, because local adaptation evens out fitness across environments and thus counteracts the variation in associated ecological patterns. Consequently, evolution generally smooths out the underlying heterogeneity in nature, making the world appear less ragged than it would be in the absence of evolution. We end by highlighting the future research needed to inform a fully integrated and predictive biology that accounts for eco-evolutionary interactions in both space and time.


2015 ◽  
Vol 9 (3) ◽  
pp. 905-923 ◽  
Author(s):  
S. E. Moustafa ◽  
A. K. Rennermalm ◽  
L. C. Smith ◽  
M. A. Miller ◽  
J. R. Mioduszewski ◽  
...  

Abstract. Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt–albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325–1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10–14 July and 20–24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ~10 and 30% in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function of bare ice expansion at the expense of snow, surface meltwater ponding, and melting of outcropped ice layers enriched with mineral materials, enabling dust and impurities to accumulate. As climate change continues in the Arctic region, understanding the seasonal evolution of ice sheet surface types in Greenland's ablation area is critical to improve projections of mass loss contributions to sea level rise.


2015 ◽  
Vol 35 (8) ◽  
pp. 864-878 ◽  
Author(s):  
Lahcen Benomar ◽  
Mohammed S. Lamhamedi ◽  
Isabelle Villeneuve ◽  
André Rainville ◽  
Jean Beaulieu ◽  
...  

2019 ◽  
Vol 116 (26) ◽  
pp. 12933-12941 ◽  
Author(s):  
David B. Lowry ◽  
John T. Lovell ◽  
Li Zhang ◽  
Jason Bonnette ◽  
Philip A. Fay ◽  
...  

Local adaptation is the process by which natural selection drives adaptive phenotypic divergence across environmental gradients. Theory suggests that local adaptation results from genetic trade-offs at individual genetic loci, where adaptation to one set of environmental conditions results in a cost to fitness in alternative environments. However, the degree to which there are costs associated with local adaptation is poorly understood because most of these experiments rely on two-site reciprocal transplant experiments. Here, we quantify the benefits and costs of locally adaptive loci across 17° of latitude in a four-grandparent outbred mapping population in outcrossing switchgrass (Panicum virgatumL.), an emerging biofuel crop and dominant tallgrass species. We conducted quantitative trait locus (QTL) mapping across 10 sites, ranging from Texas to South Dakota. This analysis revealed that beneficial biomass (fitness) QTL generally incur minimal costs when transplanted to other field sites distributed over a large climatic gradient over the 2 y of our study. Therefore, locally advantageous alleles could potentially be combined across multiple loci through breeding to create high-yielding regionally adapted cultivars.


2014 ◽  
Vol 369 (1648) ◽  
pp. 20130342 ◽  
Author(s):  
Alexander S. T. Papadopulos ◽  
Maria Kaye ◽  
Céline Devaux ◽  
Helen Hipperson ◽  
Jackie Lighten ◽  
...  

It is now recognized that speciation can proceed even when divergent natural selection is opposed by gene flow. Understanding the extent to which environmental gradients and geographical distance can limit gene flow within species can shed light on the relative roles of selection and dispersal limitation during the early stages of population divergence and speciation. On the remote Lord Howe Island (Australia), ecological speciation with gene flow is thought to have taken place in several plant genera. The aim of this study was to establish the contributions of isolation by environment (IBE) and isolation by community (IBC) to the genetic structure of 19 plant species, from a number of distantly related families, which have been subjected to similar environmental pressures over comparable time scales. We applied an individual-based, multivariate, model averaging approach to quantify IBE and IBC, while controlling for isolation by distance (IBD). Our analyses demonstrated that all species experienced some degree of ecologically driven isolation, whereas only 12 of 19 species were subjected to IBD. The prevalence of IBE within these plant species indicates that divergent selection in plants frequently produces local adaptation and supports hypotheses that ecological divergence can drive speciation in sympatry.


Sign in / Sign up

Export Citation Format

Share Document