scholarly journals GREEN SYNTHESIS OF SILVER NANOPARTICLES USING ROASTED COFFEA ARABICA BEAN EXTRACT AND ITS ANTIMICROBIAL ACTIVITY

Author(s):  
Tejaswini R ◽  
Dr Anisa Athar

An extract obtained from roasted Coffea arabica bean was used as bio-reductant and mixed with standard AgNO3 (0.1M) solution. The formation of silver nanoparticles(AgNP) was observed by the change in the colour of the solution (coffee extract + AgNO3) from brown to blackish brown. UV-vis spectrophotometry analysis showed maximum adsorption at 240nm. The SEM analysis showed the morphology of the AgNPs as oval and spherical and the sized of the particles between the range of 25nm to 51nm. The crystalline size of the AgNPs was analyzed between the range of 10nm to 30nm employing XRD technique. The antimicrobial activity study of the synthesized silver nanoparticles showed zone of inhibition against the clinically important bacteria namely- E coli, Pseudomonas, Klebsiella, Staphylococcus and Bacillus.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Mehreen Fatima ◽  
Azra Quraishi ◽  
Maida Irfan

Silver has been known for its antimicrobial activity for a very long time. Formulation of silver particles that range from 1-100nm in size makes it even more potent to induce antimicrobial effect. Green chemistry has started to become more frequent in the field of biochemical research. Silver nanoparticles synthesized from green synthesis method provide a cheap and environmental friendly method of nanoparticle preparation. The aim of the current study is green synthesis of silver nanoparticles using tomato juice as reducing and capping agent and evaluation of its antimicrobial activity. The stability and conformation of SNPs was determined by UV-visible spectroscopy. The antimicrobial activity of synthesized SNPs was determined against E.coli DH5α. Ultraviolet spectroscopic analysis offered peak at 400 nm that indicate the production of SNPs of adequate size.  E.coli DH5α showed considerable decrease upon introduction of SNPs to the bacterial inoculum. Upon increasing the concentration of silver nanoparticles an increase in zone of inhibition was recorded.  For 70µg/ml of SNPs, the zone of inhibition was 0.5 cm, while 0.6 cm, 0.7 cm and 0.7cm was recorded for 100µg/ml, 150µg/ml and 200µg/ml of SNPs respectively. The efficacy of antimicrobial activity of SNPs derived from tomato juice proves its potential use in pharmaceutical and medicinal industries for synthesis of nanomedicine.  


Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


Author(s):  
Vidyasagar G M ◽  
Shankaravva B ◽  
R Begum ◽  
Imrose ◽  
Sagar R ◽  
...  

Microorganisms like fungi, actinomycetes and bacteria are considered nanofactories and are helpful in the production of nanoparticles useful in the welfare of human beings. In the present study, we investigated the production of silver nanoparticles from Streptomyces species JF714876. Extracellular synthesis of silver nanoparticles by Streptomyces species was carried out using two different media. Silver nanoparticles were examined using UV-visible, IR and atomic force microscopy. The size of silver nanoparticles was in the range of 80-100 nm. Antimicrobial activity of silver nanoparticle against bacteria such as E. coli, S. aureus, and dermatophytes like T. rubrum and T. tonsurans was determined. Thus, this study suggests that the Streptomyces sp. JF741876 can produce silver ions that can be used as an antimicrobial substance.


RSC Advances ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 2673-2702 ◽  
Author(s):  
Anupam Roy ◽  
Onur Bulut ◽  
Sudip Some ◽  
Amit Kumar Mandal ◽  
M. Deniz Yilmaz

In this review, we discuss the recent advances in green synthesis of silver nanoparticles, their application as antimicrobial agents and mechanism of antimicrobial mode of action.


Author(s):  
P. Mosae Selvakumar ◽  
Churchil Angel Antonyraj ◽  
Revington Babu ◽  
Arun Dakhsinamurthy ◽  
N. Manikandan ◽  
...  

Author(s):  
Amita Shobha Rao ◽  
Shobha Kl ◽  
Prathibha Md’almeida ◽  
Kiranmai S Rai

  Objective: Infections caused by Gram-negative bacteria are important causes of morbidity and mortality. Extracts of plants and herbs such as Clitorea ternatea are used as diuretic. This work attempts to find out antimicrobial activity of aqueous and alcoholic extract of C. ternatea roots against Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), clinical strains of Klebsiella pneumoniae, and Candida albicans.Methods: The agar well-diffusion method was done using Mueller Hinton agar and Sabouraud’s dextrose agar. The microorganism grown in peptone water was inoculated into culture medium. 4 mm diameter well punched into the agar was filled with 20 μl of aqueous and alcoholic root extracts C. ternatea extracts in various concentrations (100-25 μg/ml). The plates were incubated and antimicrobial activity was evaluated.Results: Aqueous root extract of C. ternatea with the concentration of 100 μg/ml showed zone of inhibition against E. coli (ATCC 25922) 18 mm, P. aeruginosa (ATCC 27853) 14 mm, multidrug resistant strain of K. pneumoniae 15 mm. Alcoholic extract of C. ternatea with the concentration of 100 μg/ml showed zone of inhibition of 35 mm against E. coli (ATCC 25922), P. aeruginosa (ATCC 27853) 22 mm, and multidrug resistant strain of K. pneumoniae 28 mm. C. albicanswas resistant to both extract of C. ternatea root. Conclusions: Alcoholic extract of C. ternatea is a better antibacterial agent against multidrug resistant Klebsiella species and other Gram-negative pathogens. Further, studies are required to identify active substances from the alcoholic extracts of C. ternatea for treating infections.


2021 ◽  
Author(s):  
Smita J. Pawar ◽  
Amol Kale ◽  
Priya Zori ◽  
Rahul Dorugade

Abstract Abstract The new series of 2-(substituted amino)-N-(6- substituted-1,3-benzothiazol-2yl) acetamide BTC(a-t) has been synthesized by appropriate synthetic route from substituted 2-amino benzothiazole. The synthesized compounds were screened experimentally for its antimicrobial property against gram positive, gram negative bacteria and fungi. Zone of inhibition and minimum inhibitory concentration of compounds was determined against selected bacterial and fungal strains. Compound BTC-j N-(6-methoxy-1,3-benzothiazol-2-yl)-2-(pyridine-3-yl amino) acetamide and compound BTC-r N-(6-nitro-1,3-benzothiazol-2-yl)-2-(pyridine-3-yl amino) acetamide found to have good antimicrobial potential. The compound BTC-j has shown good antibacterial activity against S. aureus at MIC of 12.5 µg/ml, B. subtilis at MIC of 6.25µg/ml, E. coli at MIC of 3.125µg/ml and P. aeruginosa at MIC of 6.25µg/ml. No statistical difference in antimicrobial activity of standard and test compounds was found indicating test compounds have comparable activity. Further docking study was carried out to check the probable interactions with the selected protein using V-life MDS 3.5 software. (DNA gyrase, PDB: 3G75). The dock score of compounds and antimicrobial activity found to be consistent.


2021 ◽  
Vol 12 (4) ◽  
pp. 2383-2388
Author(s):  
Suguna Selvakumaran ◽  
Kayathri Marimuthu ◽  
Thiruvany Poopalan ◽  
Kalaiyarasi Tamil Selvan ◽  
Nozieana Khairuddin

Silver nanoparticles have attracted high attention worldwide for their various applications. The physiochemical parameters such as temperature, media, mixing ratio affect the rate of synthesis of silver nanoparticles and their yield. Thus, optimization of these physiochemical parameters is needed to enhance the production of silver nanoparticles. In this study, silver nanoparticles were synthesized using Aspergillus niger culture supernatant. The produced silver nanoparticles were characterized using UV-visible Spectrophotometer at 200 nm to 700 nm, which had a peak at 450 nm, indicates the formation of silver nanoparticles. It was found that Sabouraud Dextrose Broth (SDB) as optimum media, 40 ml of supernatant and 10 ml of silver nitrate as optimum mixing ratio and 65°C as optimum temperature to produce silver nanoparticles. The optimized silver nanoparticles were subjected to antimicrobial activity, and it was found that it is highly effective towards gram-negative bacteria than gram-positive bacteria where the zone of inhibition for Escherichia coli was  7 ± 2.7 mm and 5.3 ± 2.1 mm for Staphylococcus aureus.


Sign in / Sign up

Export Citation Format

Share Document