scholarly journals Effect of summer moisture deficit on growth of five white clover cultivars

Author(s):  
X. Wang ◽  
J.R. Caradus ◽  
A.C.P. Chu

Growth of five New Zealand white clover cultivars, Grasslands Kopu, Grasslands Pitau, Grasslands Huia, Grasslands Tahora and Prop, was quantified at differing soil moistures in both the field and the glasshouse. The first trial employed a rain-out shelter to impose two soil water treatments. While there were no differences among the cultivars for leaf water status, there were differences in plant growth parameters in response to water deficit. Water deficit did not significantly affect leaf appearance rate of Prop, although there was a 2- fold difference. There was, however, a 3.5- to 6-fold decrease in leaf appearance rate due to water deficit for the other cultivars. Water deficit did not significantly reduce leaf size for the medium- and small-leaved cultivars Huia, Tahora and Prop; but was halved for Kopu and Pitau. Prop had the lowest stolon growing point survival under water deficit and Pitau the highest. Leaf longevity was greatest for Prop and least for Pitau when grown under optimum water supply, but this pattern was reversed under water deficit stress. The second trial, a pot trial, investigated the response of the same five cultivars to three different soil water regimes (control, mild and severe stress). The growth parameters of smaller-leaved cultivars, particularly Prop, were less affected than the large-leaved cultivars in their response to water deficit. These short-term trials showed that some small-leaved cultivars of white clover have an ability to adjust their growth and habit in response to water deficit more effectively than large-leaved cultivars. Prop was able to maintain a higher leaf appearance rate than other cultivars when grown under water deficit. However, while exhibiting this drought tolerance adaptation the low stolon growing point survival of Prop could result in a poor recovery from drought. Small-leaved cultivars are rarely taprooted, a characteristic of plants adapted to more prolonged drought conditions. The probability of combining these characteristics and improving summer production of white clover through identification of drought tolerance is discussed. Keywords: cultivars, drought, Trifolium repens, variation, water deficit

1988 ◽  
Vol 28 (3) ◽  
pp. 321 ◽  
Author(s):  
SJ Blaikie ◽  
FM Martin ◽  
WK Mason ◽  
DJ Connor

Field canopy chambers were used to measure the effect of a range of soil water contents from surface ponding to very dry soil and the effect of high summer temperatures on the photosynthesis of irrigated white clover and paspalum pastures. Water was ponded for 5-12 days on swards of white clover and paspalum at full cover and on others that had been defoliated to a height of 50 mm. Photosynthetic rate was monitored each day and compared with a non-ponded control. In all cases there was little response in photosynthetic rate to ponding either with or without supplemental nitrogen fertiliser. Photosynthesis of full swards of white clover and paspalum was monitored during a drying cycle following irrigation and compared with the photosynthesis of a well-watered control. Soil water deficit was expressed in terms of cumulative evaporation minus rainfall (mm E - R) after irrigation. Water deficit stress reduced the maximum photosynthetic rate of white clover by 50% (from 0.8 mg CO2/m2.s at 25 mm E - R to 0.4 mg CO2/m2.s at 75 mm E - R), but the photosynthetic rate of paspalum did not decline until 70 mm E - R. At high irradiance, temperatures between 24 and 33�C had little effect on the photosynthetic rate of well-watered white clover, whereas the rate in paspalum was higher at temperatures between 29 and 38�C than at temperatures of 24-29�C. The slow surface drainage and subsequent rapid drying of the root-zone of flood irrigated soils, combined with the high temperatures experienced in northern Victoria during summer, favour paspalum and severely limit the productivity of white clover.


2009 ◽  
Vol 66 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Omar Scheneiter ◽  
Beatriz Rosso ◽  
Mauro Corletto

When breeding temperate forage species is investigated, some attributes such as herbage accumulation and seasonal growth patterns have to be considered. To modify some of these traits, knowledge of the detailed process might be useful. In order to evaluate seasonal growth of contrasting white clover populations an experiment was carried out. Treatments were five cultivars and three local populations collected in Argentina. Weekly measures were taken during each season to calculate leaf appearance and flower appearance rates, stolon growing rate and dry matter (DM) net accumulation. Different germplasm of this species have different mechanisms for DM accumulation. Leaf size, more than leaf appearance rate, was the variable with most differences among germplasm and mostly related to dry matter accumulation. During spring and summer, inflorescences production had important effects on growing stolon rate, and differences among germplasm were evident. Some local populations showed favourable attributes that could be useful for breeding.


1997 ◽  
Vol 48 (6) ◽  
pp. 819 ◽  
Author(s):  
A. R. Lawson ◽  
P. W. G. Sale ◽  
K. B. Kelly

The effect of 5 winter and 2 post-winter defoliation frequencies on the morphology of medium-leafed and large-leafed white clover and perennial ryegrass plants in an irrigated perennial pasture in northern Victoria was investigated. Measurements included leaf appearance rates, axillary bud development and survival, stolon elongation and survival, and tiller production and survival. White clover leaf appearance rate was affected little by either defoliation frequency or cultivar, ranging from 0·4 leaves/week in July to 1·1 leaves/week in February. In contrast, perennial ryegrass leaf appearance rate in the same period ranged from 0·35 to 0·7 leaves/week. Axillary bud production on clover stolons was highest in winter and spring and lowest through summer, and was usually greater in the medium-leafed than in the large-leafed cultivars. When the swards were not defoliated through winter, the rate of bud production was reduced in late winter; this was followed by a high rate of bud production in early spring, resulting in little treatment difference in the number of buds per stolon by mid spring. Bud survival was greater when initiated in winter than in summer. The rate of stolon death in spring was higher in the swards not defoliated during winter and higher in the large-leafed than in the medium-leafed cultivar. These effects were associated with the stolon elongation rate in late winter; the medium-leafed cultivar was unaffected by defoliation frequency, whereas in the large-leafed cultivars the rate of stolon elongation increased as the defoliation interval lengthened and canopy shading increased. Perennial ryegrass tiller production was greater with frequent than infrequent winter or post-winter defoliation, but never exceeded 1·2 daughter tillers/tiller, with 44% of the reproductive tillers failing to replace themselves. The low leaf appearance rate and tiller production of the perennial ryegrass may contribute to its poor competitiveness and persistence in this environment.


1992 ◽  
Vol 43 (3) ◽  
pp. 659 ◽  
Author(s):  
L Guobin ◽  
DR Kemp ◽  
GB Liu

The effect of water stress during summer and recovery after rain on herbage accumulation, leaf growth components, stomatal conductance and leaf water relations of white clover (Trifolium repens cv. Haifa) and phalaris (Phalaris aquatica cv. Australian Commercial) was studied in an established mixed pasture under dryland (dry) or irrigated (wet) conditions. Soil water deficits under dry conditions reached 150 mm and soil water potentials in the top 20 cm declined to nearly -2 MPa after 50 days of dry weather. Water stress severely restricted growth of both species but then after rain fell, white clover growth rates exceeded those of phalaris. Under irrigation, white clover produced twice the herbage mass of phalaris but under dry conditions herbage production was similar from both species. Leaf appearance rates per tiller or stolon were slightly higher for white clover than phalaris but were reduced by 20% under water stress in both species. Leaf or petiole extension rates were more sensitive to water stress than leaf appearance rates and declined by 75% in phalaris and 90% in white clover. The ratio of leaf or petiole extension rates on dry/wet treatments was similar for both species in relation to leaf relative water contents, but in relation to leaf water potentials phalaris maintained higher leaf growth rates. Phalaris maintained a higher leaf relative water content in relation to leaf water potentials than did white clover and also maintained higher leaf water potentials in relation to the soil water potential in the top 20 cm. Stomata1 conductances for both species declined by 80-90% with increasing water stress, and both species showed similar stomatal responses to bulk leaf water potentials and leaf relative water contents. It is suggested that the poorer performance of white clover under water stress may be due principally to a shallower root system than phalaris and not due to any underlying major physiological differences. The white clover cultivar used in this study came from the mediterranean region and showed some different responses to water stress than previously published evidence on white clover. This suggests genetic variation in responses to water stress may exist within white clover. To maintain white clover in a pasture under dry conditions it is suggested that grazing practices aim to retain a high proportion of growing points.


2012 ◽  
Vol 152 (1) ◽  
pp. 104-118 ◽  
Author(s):  
M. DE A. SILVA ◽  
J. L. JIFON ◽  
J. A. G. DA SILVA ◽  
C. M. DOS SANTOS ◽  
V. SHARMA

SUMMARYThe relationships between physiological variables and sugarcane productivity under water deficit conditions were investigated in field studies during 2005 and 2006 in Weslaco, Texas, USA. A total of 78 genotypes and two commercial varieties were studied, one of which was drought-tolerant (TCP93-4245) and the other drought-sensitive (TCP87-3388). All genotypes were subjected to two irrigation regimes: a control well-watered treatment (wet) and a moderate water-deficit stress (dry) treatment for a period of 90 days. Maximum quantum efficiency of photosystem II (Fv/Fm), estimated chlorophyll content (SPAD index), leaf temperature (LT), leaf relative water content (RWC) and productivity were measured. The productivity of all genotypes was, on average, affected negatively; however, certain genotypes did not suffer significant reduction. Under water deficit, the productivity of the genotypes was positively and significantly correlated with Fv/Fm, SPAD index and RWC, while LT had a negative correlation. These findings suggest that genotypes exhibiting traits of high RWC values, high chlorophyll contents and high photosynthetic radiation use efficiency under low moisture availability should be targeted for selection and variety development in programmes aimed at improving sugarcane for drought prone environments.


PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Piyanan Pipatsitee ◽  
Cattarin Theerawitaya ◽  
Rujira Tiasarum ◽  
Thapanee Samphumphuang ◽  
Harminder Pal Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document