Persistence of perennial ryegrass, tall fescue and cocksfoot following annual sowings: influence of grass species, ryegrass cultivar and pasture age on yield, composition and density

2021 ◽  
Vol 17 ◽  
Author(s):  
Tom Maxwell ◽  
Grant Edwards ◽  
Katherine Tozer ◽  
Gerald Cosgrove

Persistence is an important component of perennial pasture-grass productivity. Defining traits that affect persistence is essential for improving pasture longevity through plant breeding and for identifying persistence traits that should be included in cultivar ranking indices. Compared with conventional longitudinal studies, where a single sowing is monitored over time, repeated annual sowings allow the effects on persistence of sowing year and the ensuing interactions between environment and age of pasture to be identified. An experiment was commenced in 2015 under sheep grazing in Canterbury and in 2016 under cattle grazing in Waikato, where eight cultivars of perennial ryegrass representing different ploidy, flowering date, and cultivar age (release date), and one cultivar each of tall fescue and cocksfoot were sown in four randomised complete blocks in autumn each year. This paper reports interim data on spring and autumn pasture yield, composition, and density of 3-year-old, 2-year-old and 1-year-old pastures exposed to the same environmental conditions within the same, single year. There were significant effects on yield, botanical composition, basal cover and tiller density due to cultivar, pasture age, and their interaction. When the confounding effect of year-to-year variation was removed by comparing each age cohort in the same year, the underlying differences among grass species and cultivars, and ages of pasture, is starting to reveal the nature of this influence on pasture persistence.

2007 ◽  
Vol 47 (2) ◽  
pp. 159 ◽  
Author(s):  
A. R. Lawson ◽  
K. B. Kelly

A field experiment was established in northern Victoria in the autumn of 1999 to quantify the effects of renovating a 15-year-old, irrigated perennial pasture with a high paspalum content. The treatments were: (i) control, the existing pasture; (ii) oversown, the existing pasture grazed, topped and direct drilled; and (iii) resown, the existing pasture sprayed, cultivated and a new pasture sown. The grass species used in both renovation treatments were perennial ryegrass, Italian ryegrass and tall fescue. The treatments were grazed by dairy cows. The botanical composition, tiller density and plant frequency are reported in this paper. Oversowing with either perennial or Italian ryegrass increased the sown grass content by an average of 4–8% DM, and by up to 20% DM during winter and spring, but did not affect the average white clover, volunteer species or dead contents. Oversowing did not affect the sown grass or paspalum tiller densities but annual oversowing with either perennial or Italian ryegrass increased the ryegrass plant frequency and, in 2 of the 4 years, reduced the white clover growing point density. Resowing increased (P < 0.05) the content of sown grasses (by 12% DM for perennial ryegrass and by 20% DM for tall fescue) and white clover (by 8% DM) and decreased (P < 0.05) the content of volunteer species (by 18% DM) and, in years 1 and 2, dead material. The plant frequency of tall fescue increased over time (from 75 to 83% of quadrats), whereas that of perennial ryegrass declined (from 87 to 72% of quadrats). This resulted in the resown tall fescue having a lower (P < 0.05) white clover content and growing point density in years 3 and 4, and a tendency for a lower volunteer species content and tiller density in year 4, than the resown perennial ryegrass. Tall fescue is thus better able to resist the invasion of summer-active species and is less likely to require either oversowing or resowing than perennial ryegrass-based pastures. These results suggest that tall fescue should be considered as an alternative to perennial ryegrass when sowing pastures. The use of nitrogen did not improve the sown grass content, tiller density or plant frequency and will not therefore overcome problems resulting from a low ryegrass content.


2018 ◽  
pp. 169-176
Author(s):  
Thomas M R Maxwell ◽  
Grant R Edwards ◽  
Gerald P Cosgrove

A long-term pasture persistence trial, consisting of repeated annual sowings, commenced in Canterbury in 2015 and is planned to continue until 2024. Preliminary results of the first 3 years sowings are reported. Each annual sowing used the same randomised block design of eight perennial ryegrass cultivars, one tall fescue and one cocksfoot cultivar, replicated four times. Grasses were drilled into a cultivated seedbed in autumn, with white clover broadcast-sown, then rolled with a Cambridge roller. Except for one 3-week spell in spring and in autumn to accumulate herbage to measure DM yield, botanical composition, morphology and sward density, plots were continuously stocked with sheep to maintain a 3-8 cm sward height from late-August to late-May. Results from the first 12 months following each of the three annual sowings (2015, 2016 and 2017) indicate establishment year had a greater influence on DM yield, botanical composition, grass leaf and stem proportions, and basal cover than did grass species or cultivar. Accumulating data from successive annual sowings and continued monitoring of each will help identify the long-term effect and difference between establishment years, as well as grass persistence traits for inclusion in the Forage Value Index ranking of perennial ryegrass cultivars.


1996 ◽  
Vol 127 (1) ◽  
pp. 57-65 ◽  
Author(s):  
D. Wilman ◽  
Y. Gao

SUMMARYFour grass species, three hybrids and three mixtures were grown in field swards near Aberystwyth. All swards were amply supplied with nutrients and were cut at 5-week intervals during the year of sowing (1989) and during the following 4 years. The order of the grasses in rate of establishment was: Westerwolds ryegrass > Italian ryegrass (Lolium multiflorum) > Italian ryegrass × perennial ryegrass, Italian ryegrass × meadow fescue, perennial ryegrass (Lolium perenne) > perennial ryegrass × meadow fescue, meadow fescue (Festuca pratensis) > tall fescue (Festuca arundinacea). During the sowing year as a whole, Italian ryegrass was the highest yielding grass, followed by Westerwolds ryegrass. During the remaining period (1990–93), as a whole, the highest yields were obtained from perennial ryegrass sown alone or in a mixture with tall fescue. Tall fescue sown alone was one of the lowest yielding grasses in the year of sowing, but developed to be the highest yielding in 1992 and 1993. Westerwolds ryegrass persisted least well, although some plants did survive until 1992. Italian ryegrass persisted better than Westerwolds and Italian ryegrass × meadow fescue persisted better than Italian ryegrass. Hybrid ryegrass and perennial ryegrass × meadow fescue persisted satisfactorily but with fewer tillers/m2 than perennial ryegrass or tall fescue. The yield of tall fescue in March was as high as that of Italian ryegrass in 1990 and 1991 and higher than that of any of the other grasses in 1992 and 1993; the tiller density of tall fescue was particularly high in March. The yield of mixtures (Italian ryegrass with perennial ryegrass, Italian ryegrass with tall fescue and perennial ryegrass with tall fescue) was, on average, 2·5% more than the mean of the component species when sown alone. When grown with ryegrass, tall fescue was not prominent initially but its proportion in the sward gradually increased.


Author(s):  
F.J. Parry ◽  
R.J. Lucas ◽  
B.A. Mckenzie

An experiment was conducted on a fertile Walcanui silt loam in 1991/92 to examine the productivity of 4 perennial pasture grass species, Grasslands Roa tall fescue (Festuca arundinacea), Grasslands Marsden hybrid tyegrass (Lolium perenne x Lolium hybridum), Grasslands Maru phalaris (Phalaris aquatica), Grasslands Wana cocksfoot (Dactylis glomerata), and 2 binary mixtures, tall fescue plus cocksfoot and phalaris plus cocksfoot. Between July 1991 and September 1992 the highest production came from phalaris plus cocksfoot at 19.05 t DM/ha. Hybrid ryegrass, phalaris, tall fescue plus cocksfoot, cocksfoot, and tall fescue produced 17.44, 17.13, 16.96, 14.17, and 13.13t DM/ha respectively. The botanical composition of both mixtures averaged equal proportions of the sown species. The proportion of cocksfoot increased over the summer period then declined for the following autumn/winter period. The experiment shows that simple pasture grass mixtures may be highly productive. These findings support the increasing farmer practice of sowmg some pasture grasses in simple mixtures. Keywords: binary mixture, botanical composition, Dactylis glomerata, dry matter production, Festuca arundinuceu, Lolium perenne x Lolium hybridum, pasture mixtures, Phalaris aquatica, seasonal production


2021 ◽  
Vol 17 ◽  
Author(s):  
Marcus Talamini Junior ◽  
Shirin Sharifiamina ◽  
Elsa Axelle David ◽  
Annamaria Mills ◽  
Derrick Jan Moot

Nitrogen (N) and water availability affect pasture production and persistence. Yield and botanical composition of four monocultures of brome (BR), cocksfoot (CF), perennial ryegrass (RG) and tall fescue (TF) were evaluated with (+N) or without (-N) N at Ashley Dene farm, Canterbury, over six growth seasons from establishment in 2014/15 (Year 1) to 2019/20 (Year 6). Total annual yields ranged from 2.04 (RG-N; Year 1) to 12.7 t DM/ha/yr (CF+N; Year 3). Yields differed among species in Years 1, 3, 4 and 6 when TF pastures had the lowest production. There was no difference in DM production from BR, CF and RG pastures. Additionally, +N pastures produced ~55% more yield than –N pastures in Years 3 and 5 when spring/summer rainfall was adequate to maintain growth. Sown grasses accounted for >89% of total DM yield in Years 1 and 2 but the proportion of total annual DM production from sown species declined from Year 3. By Year 6, sown species accounted for 48±3.3 (TF) to 64±3.3% (BR, CF and RG) of total annual DM production. Generally, TF failed to perform in this dryland environment. In contrast, the production and persistence of the other three species were not different when subjected to water deficits alone.


Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1086-1088 ◽  
Author(s):  
Hiroshi Shinozuka ◽  
Noel O.I. Cogan ◽  
German C. Spangenberg ◽  
John W. Forster

RNA-Seq methodology has been used to generate a comprehensive transcriptome sequence resource for perennial ryegrass, an important temperate pasture grass species. A total of 931 547 255 reads were obtained from libraries corresponding to 19 distinct tissue samples, including both vegetative and reproductive stages of development. Assembly of data generated a final filtered reference set of 48 713 contigs and scaffolds. The transcriptome resource will support whole genome sequence assembly, comparative genomics, implementation of genotyping-by-sequencing (GBS) methods based on transcript sampling, and identification of candidate genes for multiple biological functions.


1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.


2011 ◽  
Vol 15 ◽  
pp. 157-162
Author(s):  
G.D. Milne

Recent discussion about pasture persistence concentrates on pastures based on perennial ryegrass, the most commonly used grass species. This paper raises the question as to whether some of the causes of poor pasture persistence are due to perennial ryegrass being used in environments to which it is not suited. The adaptation to environmental stresses, particularly water, temperature and nutrient deficiencies, in different regions of New Zealand of tall fescue, cocksfoot, phalaris, and lucerne are discussed, and how this impacts on persistence advantages over perennial ryegrass. Keywords: persistence, pasture, Dactylis glomerata, Festuca arundinacea, Lolium perenne, Medicago sativa, Phalaris aquatica


2004 ◽  
Vol 55 (4) ◽  
pp. 389 ◽  
Author(s):  
K. V. Cunliffe ◽  
A. C. Vecchies ◽  
E. S. Jones ◽  
G. A. Kearney ◽  
J. W. Forster ◽  
...  

Ryegrass species are among the most important species in sown pastures, turf settings, and weed populations worldwide. Perennial ryegrass (Lolium perenne L.) is an outcrossing, wind-pollinated grass. Recent research has demonstrated the feasibility of developing transgenic perennial ryegrass varieties. In order to model the consequences of gene flow from transgenic grass genotypes in a field situation, the model non-transgenic trait of fertility among autotetraploid genotypes was chosen. Gene flow over distance and direction from a donor plot to surrounding sexually compatible recipient plants was studied. Reproductive isolation was achieved through the fertility barrier that arises between tetraploid and diploid ryegrass genotypes, despite the presence of diploid plants in a meadow situation. Fertility was used as an indication of effective gene flow over distance and direction. Measures of the fertility of recipient plants included total seed production (TSP), floret site utilisation (FSU), and relative fertility of recipient plants as a percentage of those within the donor plot (RF%). A leptokurtic distribution for gene flow was identified, with differences in the rate of decline over distance depending on direction. Simple sequence repeat (SSR) polymorphism was used to identify the paternity of progeny plants. The proportional representation of parents among the progeny was not significantly different from that expected due to the numerical representation of the different donor parent genotypes. The results of this research will have important implications for risk analysis prior to the field release of transgenic ryegrasses, fescues, and other pasture grass species, and for seed production in terms of cultivar purity and optimum isolation distance.


1979 ◽  
Vol 93 (1) ◽  
pp. 13-24 ◽  
Author(s):  
E. A. Garwood ◽  
K. C. Tyson ◽  
J. Sinclair

SUMMARYThe yield and quality of herbage produced by six grasses (perennial ryegrass, cocksfoot, timothy, rough-stalked meadow grass, tall fescue and Italian ryegrass) were examined both without irrigation and under two irrigation regimes. Water was applied according to the potential soil water deficit (potential SWD): the soil was either partially returned to field capacity (FC) after each cut or fully returned to FC whenever the potential SWD reached 25 mm. The swards were cut either at 3 (C3) or 6 (C6) week intervals over a 2 year period.Partial irrigation increased yields by 12–14% in the first year and by 36–58% in the second. Full irrigation produced little more growth than partial irrigation in the first year (maximum SWD, 188 mm) but increased yield by 78–93% in the second, very dry, year (maximum SWD, 311 mm). Under treatment C3 response per unit of water applied was similar with both partial and full irrigation, but under C6 the response was greater with partial (2·86 kg D.M./m3) than with full irrigation (1·79 kg D.M./m3).There were marked differences between the species in their ability to grow under drought conditions in the second year of the experiment. Without irrigation, roughstalked meadow grass and Italian ryegrass did not survive the drought. The performance of tall fescue was markedly superior to both perennial ryegrass and cocksfoot in these conditions. Of the surviving grasses timothy made least growth.


Sign in / Sign up

Export Citation Format

Share Document