scholarly journals SYNTHESIS AND SPECTRAL CHARACTERISTICS OF THE Ru(III,ІІ), Rh(III) AND Pd(II) COMPLEXES BASED ON N-ALLYLTHIOAMIDES AND PRODUCTS THEIR PROTON- AND IODOCYCLIZATION

2020 ◽  
Vol 86 (4) ◽  
pp. 63-90
Author(s):  
Polina Borovyk ◽  
Mariia Litvinchuk ◽  
Anton Bentya ◽  
Svitlana Orysyk ◽  
Yuri Zborovskii ◽  
...  

The paper shows the possibility of using N-allylthioamides H2L1-H2L3 and products of their proton / iodine cyclization HL4, HL5 as chelating agents in the complexation reactions with Ru(III,II), Rh(III) and Pd(II) ions. As a result, a series of new chelating complexes of [M(HL1-3)Cl2(H2O)2], [M(HL1-3)2(H2O)2]Cl (2), [М(HL1-3)2(H2O)Cl] (3), [Ru(HL1-3)(PPh3)2]Cl (4), K[Pd(HL1-3)Cl2] (5), [Pd(HL1-3)2] (6), [M(L4,5)2(H2O)2]Cl (7), K[Pd(L4,5)Cl2] (8), [Pd(L4,5)2] (9) in which the ligands are coordinated to the metal ions by O,S- or O,N-bidentate chelate manner in a monodeprotonated form, where synthesis, isolated in solid state and characterized by the methods of elemental chemical analysis, 1H NMR, IR and UV-Vis spectroscopy. It was found that HL4,5, when complexed, is converted to the corresponding tautomeric form with O,N-coordination through the oxygen atoms of the deprotonated hydroxyl group and the nitrogen atoms of the dihydrothiazolyl ring. It has been established that the allyl moiety does not participate in the formation of a coordination bond with the Ru (III,II), Rh(III) and Pd(II) ions, which is probably due to the presence in the molecules of ligands of other donor nucleophilic centers located in advantageous position for the formation of six-membered chelated metal cycles. In contrast to complexes 1-9, the compounds of [M(HL6)2(H2O)2Cl2]Cl (10), [Pd(HL6)2Cl2] (11) based on 2-(5-(iodomethyl)-1,3-thiazolidin-2-ylidene) malononitrile (HL6) were obtained with monodentate coordination of the ligand in molecular form, which is caused by the presence of two nitrile groups in the HL6 molecule with sp-hybridization of the nitrogen atomic orbitals, which provides almost linear overlap with the d-orbitals of the metal atom upon formation of CN→M bond. The study of the complex formation of metal chlorides with H2L1-H2L3 by the method of isomolar series and UV-Vis spectra showed that there is interaction in the M: L = 1:1, 1:2, 1:3 molar ratio (in the case of Ru3+, Rh3+ ions) and 1:1, 1:2 (in the case of Pd2+ and Ru2+ ions) which is related to the coordination capacity of metals and their ability to form octahedral (for Ru3+, Rh3+ ions) or square-planar (for Pd2+ ions) coordination unit. The reaction of Ru3+, Rh3+ and Pd2+ ions with HL4, HL5 in the isopropanol solution also occurs in the ratio M:L = 1:1, 1:2, 1:3, however, the titration curves are much less pronounced compared to complexes based on H2L1-H2L3. In the interaction of HL6 with the ions of the above metals, the curve has the appearance of an almost straight line, indicating the so-called "state of unsaturation" of the system in the corresponding concentration range due to the monodentate coordination of HL6. The solubility study of the obtained complexes showed that ionic type compounds 2, 4, 5, 7, 8, 10 were dissolved in methanol, partially (or completely) in ethanol, and at low concentrations (10-3-10-5 mol/l) - in water, while molecular type compounds 1, 3, 6, 11 are soluble in DMSO and DMF only.

2019 ◽  
Vol 85 (3) ◽  
pp. 3-19
Author(s):  
Polina Borovyk ◽  
Mariia Litvinchuk ◽  
Anton Bentya ◽  
Svitlana Orysyk ◽  
Yurii Zborovskiy ◽  
...  

The possibility of using N-allylcarbothioamide derivatives as well as products of their iodine- and proton-initiated electrophilic heterocyclizations as chelating agents in complexation reactions with Zn(II) and Ag(I) ions is shown. Processing of the obtained experimental data showed that N-allythioamides of pyrimidinyl (cyclohexenyl) carboxylic acids H2L1 – H2L3 and their proton- and iodo-cyclization products HL4, HL5 containing four nucleophilic reaction centers (two oxygen atoms of the carbonyl and hydroxyl groups and N-, S-carbothioamide groups or N-atoms of the dihydrothiazole moiety) are polydentate ligands capable of coordinating with metal ions to form stable six-membered chelate metallocycles. A series of new chelating mono-, bi- and polynuclear complexes Zn(II) and Ag (I) of the composition [Zn2L1,32]n, [Zn2(HL1-3)2(CH3COO)2], [Ag2(HL1,3)2]n, [Zn(HL1-3)2], [Ag(H2L3)2NO3], [Zn(HL4,5)2], K[Ag(HL4,5)2] were synthesized and isolated in solid state. Their molecular structure was established by methods of elemental chemical analysis, NMR 1H, IR and UV-Vis spectroscopy. At a ratio of M:L 1:2, complexes were isolated in which two ligand molecules H2L1 − H2L3 are coordinated to the metal ion by the sulfur atoms of the carbothioamide group and the oxygen of the mono-deprotonated hydroxyl group. It was established that the products of the proton-/iodocyclization HL4, HL5 in the complex formation pass into the thione tautomeric form with coordination through the oxygen atoms of the deprotonated hydroxyl group and nitrogen atoms of the dihydrothiazole heterocycle. At M:L 1:1, binuclear or polynuclear coordination compounds are formed. It was shown that polymerisation in complexes [Zn2L1,32]n and [Ag2(HL1,3)2]n is due to the formation of Zn−(O2SN)−Zn and Ag−O−Ag polymer chains. Investigation of the solubility of the resulting complexes showed that the polymer complexes are weakly soluble or insoluble in DMSO, DMF, while the mononuclear are soluble in methanol, as well as in water.


2019 ◽  
Vol 85 (3) ◽  
pp. 3-19
Author(s):  
Polina Borovyk ◽  
Mariia Litvinchuk ◽  
Anton Bentya ◽  
Svitlana Orysyk ◽  
Yurii Zborovskiy ◽  
...  

The possibility of using N-allylcarbothioamide derivatives as well as products of their iodine- and proton-initiated electrophilic heterocyclizations as chelating agents in complexation reactions with Zn(II) and Ag(I) ions is shown. Processing of the obtained experimental data showed that N-allythioamides of pyrimidinyl (cyclohexenyl) carboxylic acids H2L1 – H2L3 and their proton- and iodo-cyclization products HL4, HL5 containing four nucleophilic reaction centers (two oxygen atoms of the carbonyl and hydroxyl groups and N-, S-carbothioamide groups or N-atoms of the dihydrothiazole moiety) are polydentate ligands capable of coordinating with metal ions to form stable six-membered chelate metallocycles. A series of new chelating mono-, bi- and polynuclear complexes Zn(II) and Ag (I) of the composition [Zn2L1,32]n, [Zn2(HL1-3)2(CH3COO)2], [Ag2(HL1,3)2]n, [Zn(HL1-3)2], [Ag(H2L3)2NO3], [Zn(HL4,5)2], K[Ag(HL4,5)2] were synthesized and isolated in solid state. Their molecular structure was established by methods of elemental chemical analysis, NMR 1H, IR and UV-Vis spectroscopy. At a ratio of M:L 1:2, complexes were isolated in which two ligand molecules H2L1 − H2L3 are coordinated to the metal ion by the sulfur atoms of the carbothioamide group and the oxygen of the mono-deprotonated hydroxyl group. It was established that the products of the proton-/iodocyclization HL4, HL5 in the complex formation pass into the thione tautomeric form with coordination through the oxygen atoms of the deprotonated hydroxyl group and nitrogen atoms of the dihydrothiazole heterocycle. At M:L 1:1, binuclear or polynuclear coordination compounds are formed. It was shown that polymerisation in complexes [Zn2L1,32]n and [Ag2(HL1,3)2]n is due to the formation of Zn−(O2SN)−Zn and Ag−O−Ag polymer chains. Investigation of the solubility of the resulting complexes showed that the polymer complexes are weakly soluble or insoluble in DMSO, DMF, while the mononuclear are soluble in methanol, as well as in water.


2018 ◽  
Vol 74 (5) ◽  
pp. 590-598 ◽  
Author(s):  
Mikhail E. Minyaev ◽  
Alexander N. Tavtorkin ◽  
Sof'ya A. Korchagina ◽  
Galina N. Bondarenko ◽  
Andrei V. Churakov ◽  
...  

Crystals of mononuclear tris[bis(2,6-diisopropylphenyl) phosphato-κO]pentakis(methanol-κO)lanthanide methanol monosolvates of lanthanum, [La(C24H34O4P)3(CH3OH)5]·CH3OH, (1), cerium, [Ce(C24H34O4P)3(CH3OH)5]·CH3OH, (2), and neodymium, [Nd(C24H34O4P)3(CH3OH)5]·CH3OH, (3), have been obtained by reactions between LnCl3(H2O) n (n = 6 or 7) and lithium bis(2,6-diisopropylphenyl) phosphate in a 1:3 molar ratio in methanol media. Compounds (1)–(3) crystallize in the monoclinic P21/c space group and have isomorphous crystal structures. All three bis(2,6-diisopropylphenyl) phosphate ligands display a κO-monodentate coordination mode. The coordination number of the metal atom is 8. Each [Ln{O2P(O-2,6-iPr2C6H3)2}3(CH3OH)5] molecular unit exhibits four intramolecular O—H...O hydrogen bonds, forming six-membered rings. The unit forms two intermolecular O—H...O hydrogen bonds with one noncoordinating methanol molecule. All six hydroxy H atoms are involved in hydrogen bonding within the [Ln{O2P(O-2,6-iPr2C6H3)2}3(CH3OH)5]·CH3OH unit. This, along with the high steric hindrance induced by the three bulky diaryl phosphate ligands, prevents the formation of a hydrogen-bond network. Complexes (1)–(3) exhibit disorder of two of the isopropyl groups of the phosphate ligands. The cerium compound (2) demonstrates an essential catalytic inhibition in the thermal decomposition of polydimethylsiloxane in air at 573 K. Catalytic systems based on the neodymium complex tris[bis(2,6-diisopropylphenyl) phosphato-κO]neodymium, (3′), which was obtained as a dry powder of (3) upon removal of methanol, display a high catalytic activity in isoprene and butadiene polymerization.


2017 ◽  
Vol 900 ◽  
pp. 35-39
Author(s):  
Cheng Chien Wang ◽  
Chih Lung Chiu ◽  
Jian Sheng Shen

The different amount of hydrophilic hydroxyl group, including 3, 5, 7 and 10 wt.% copoly (styrene-co - divinyl benzene – co - 2-hydroxylethylenemethacrylate) (poly (St-co-DVB- co -HEMA) s) nanoparticles were synthesized via microemulsion polymerization in the present paper. The average size of the poly (St-co-DVB-co-HEMA) s was ca. 44 nm after zetasizer (DLS) measurement and SEM observation. The characteristic peaks at 3200 ~3600 cm-1 in FTIR was assigned at hydroxyl group of HEMA unit. The NBR/poly (St-co-DVB-co-HEMA) s composites films with 250 μm thickness were prepared simply via latex mixing and followed by spinning coating. The mechanical properties of the poly (St-co-DVB-co-HEMA) s/rubber nanocomposites, including the tensile strength, modulus and elongation, were increased with that of increasing of poly (St-co-DVB-co-HEMA) s adding. In addition, as the poly (St-co-DVB-co-HEMA) s nanoparticles carried out with constant St/HEMA molar ratio of 97:3 and the DVB content in 10 wt.%, the elongation at break that up to more than 3500% and the ultimate stress increased from 0.2 MPa to 0.6 MPa. The poly (St-co-DVB-co-HEMA) s nanoparticles prepared by emulsion polymerization could be successfully enhanced the mechanical properties of rubber latex.


2008 ◽  
Vol 5 (2) ◽  
pp. 285-296
Author(s):  
Baghdad Science Journal

A new Schiff base o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on (HL) ,have been prepared and characterization.(HL) has been used as a chelating ligand to prepare a number of metal complexes VO(II) ,Cr(III) ,Mn(II),Fe(II),Hg(II) and UO2(II) .and mixed ligands complexes have been prepared between o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on and 8- hydroxy quinoline with VO(II),Zn(II),Cd(II), Hg(II) and UO2(II) the prepared complexes were isolated and characterized by (FT-IR)and (UV-Vis) spectroscopy. Elemental analysis (C.H.N) Chloride contents, Flame atomic absorption technique. in addition to magnetic susceptibility and conductivity measurement. Molar ratio measurement in solution gave comparable results with those obtained from solid state study.


2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Trung Kien Pham ◽  
Tran Ngo Quan

In this paper, we report on synthesizing xonotlite, calcium silicate hydrate (CSH), via a hydrothermal reaction using rice husk from the Mekong Delta, Vietnam. The rice husks were burnt at 1000 °C for 3 h. Grey rice husk ash was collected, then mixed with Ca(OH)2 at a Ca/Si molar ratio of 1 : 1. This was followed by a hydrothermal reaction at 180 °C for 24 h and 48 h to obtain the xonotlite mineral. Before and after adsorption, 3-mm xonotlite pellets were thoroughly characterized using X-ray diffractometry (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and ultraviolet-visible (UV-VIS) spectroscopy. This material has potential application in chromium(III) removal during a chrome-plating process. The adsorption efficiency of the 3-mm pellet samples reached more than 76 % after 12 h.


2015 ◽  
Vol 14 (2) ◽  
pp. 12
Author(s):  
Nittaya Sudsong ◽  
Wanna Phiwkliang ◽  
Bunjerd Jongsomjit ◽  
Piyasan Praserthdam

In this research, the modification of TiCl4/MgCl2/THF catalyst system with various metal chlorides was investigated on ethylene polymerization. Experimentally, metal chlorides (CaCl2, FeCl2 and ZnCl2) were simultaneously introduced different with TiCl4/MgCl2/THF catalyst. ICP analysis was used to determine the total amount of each metal in the catalyst. For polymerization reaction, TEA was used as cocatalyst and hexane was used as a medium solvent. The Al/Ti molar ratio was 140. The activity result of Ca-Al, Zn-Al and Fe-Al was 979, 1009 and 1476 kgPE/molTi.h, respectively. The coaddition of AlCl3 and FeCl2 in TiCl4/MgCl2/THF catalyst system exhibited the highest activity. It suggested that the co-addition of AlCl3 and FeCl2 has higher electronegativity (EN) and the radius of Fe2+ is closer to Mg2+ resulting in an increased efficiency of the THF removal. This result led to improve the catalyst performance.


2014 ◽  
Vol 787 ◽  
pp. 35-40 ◽  
Author(s):  
Xiao Yan Zhou ◽  
Peng Wei Zhou ◽  
Hao Guo ◽  
Bo Yang ◽  
Ru Fei Ren

The p-n junction photocatalysts, p-CuO (at. 0-25%)/n-ZnO nanocomposite were prepared through hydrothermal method without using any organic solvent or surfactant. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-Ray spectroscopy, and UV-vis spectroscopy. The results demonstrated that the CuO/ZnO nanocomposite presented a two-dimensional morphology composed of sheet-like ZnO nanostructures adorned with CuO nanoparticles. The photocatalytic activity of CuO/ZnO with different Cu/Zn molar rations and pure ZnO synthesized by the identical synthetic route were evaluated by degrading methylene blue (MB) dye under UV-visible light irradiation. The CuO/ZnO with Cu/Zn molar ratio of 4% exhibits the highest photocatalytic activity compared that of the other photocatalysts under the identical conditions. It is mainly attributed to the increased charge separation rate in the nanocomposite and the extended photo-responding range.


2005 ◽  
Vol 876 ◽  
Author(s):  
Gerald Ziegenbalg ◽  
Carsten Pätzold ◽  
Ute Ŝingliar ◽  
Rico Berthold

AbstractGas phase ammonolysis of volatile metal chlorides at elevated temperatures is a favorable way to produce nitride or oxynitride nanopowders. Their composition as well as the physico-chemical properties is determined by reaction temperature, molar ratio of the reactants and the residence time of the gases in the reaction zone. Both single and multi component powders can be obtained. Typical particle sizes are in the range of 50 to 350 nm. The specific surface can reach values up to 300 m2/g. Microporous analysis revealed the presence of pores with a diameter between 0.6 and 0.7 nm in amorphous silicon nitride. The powders can be used, depending on the characteristics, as catalyst or basic catalyst support. The paper gives an overview about vapor phase synthesis of single and multi component nitrides as well as the use of amorphous silicon nitride as a basic catalyst support for dehydrogenation of propane.


2021 ◽  
Vol 873 ◽  
pp. 53-58
Author(s):  
Yang Yi Chen ◽  
Min Pan ◽  
Shan Hong Hu ◽  
Qi Huan ◽  
Chu Yang Zhang

The surface wettability of thermo-responsive random poly (ethylene glycol methyl ether methacrylate-co-triethylene glycol methyl ether methacrylate), abbreviated as P(MEOMA-co-MEO3MA), was investigated in thin film. UV-Vis spectroscopy shows that the LCST of P(MEOMA-co-MEO3MA) with molar ratios of 0:20, 6:14 and 9:11 were 43°C, 32 oC and 25 oC, respectively. LCST shifts towards lower temperature when molar ratio of MEOMA increases. ATR-FTIR indicates that P(MEOMA-co-MEO3MA) thin film experienced a collapse when the temperature passes its LCST. The contact angle of the paraffin oil on the film decreases 15o when the temperature is above its LCST, which confirms the surface wettability can be controlled. Atomic force microscopy shows the surface of the swollen thin film becomes rougher when above it LCST.


Sign in / Sign up

Export Citation Format

Share Document