scholarly journals PHASE EQUILIBRIA IN THE NaCl–CaCl2–CaO SYSTEM

2021 ◽  
Vol 87 (2) ◽  
pp. 77-86
Author(s):  
Anatoliy Omelchuk ◽  
Igor Skryptun ◽  
Nikolay Zakharchenko ◽  
Olha Bosenko ◽  
Ruslan Savchuk ◽  
...  

The phase equilibria of the ternary system CaCl2 – NaCl – CaO in the area which enriched of calcium and sodium chloride were investigated by the methods of differential-thermal analysis and powder X-ray phase analysis. In the systems were determined the equilibrium concentration of calcium oxide and the composition of the phases, which at the same time exist in an equilibrium state at different temperatures. The surfaces of liquidus and solidus were established, the compositions of the sections of the ternary system CaCl2–NaCl–CaO were defined, which recommended for electrochemical reduction of refractory metal oxides (titanium, zirconium and other), which allow electrolysis in the temperature range from 550 to 1000 °С. Five polythermal sections of the NaCl – CaCl2 – CaO ternary system were studied. For each polythermal section the regions of existence of the liquid and solid phases were established. For each polythermal section state diagrams were constructed. Used X-Ray phase analyses it was established the compositions of liquid and solid phases for each polythermal sections. The phases of which the system consists were determined. At a constant ratio of components [NaCl]:[CaCl2] = 1.06 (mol.) in the melts of the ternary system CaCl2 – NaCl – CaO, the equilibrium content of calcium oxide reaches 12.0 mol.%, while their crystallization temperature does not exceed 550 °C. This allows us to recommend mixtures of this composition for electrochemical reduction of refractory metal oxides in a wide range of temperatures (from 550 to 1000 °C) with a high content of both calcium and sodium chlorides (not less than 40 mol.%) and oxide. calcium (up to 12.0 mol.%). The eutectic of this ternary system has a melting point of 480 ° C and corresponds to he composition (mol.%): CaCl2 (45.8) – NaCl (47.0) – CaO (7.2).

2016 ◽  
Vol 697 ◽  
pp. 565-571 ◽  
Author(s):  
Rui Zhang ◽  
Pekka Taskinen

Phase equilibria of the BaO-SiO2-Al2O3 ternary system was experimentally investigated using a quenching technique and analyzed by Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Analysis (EDS) and X-ray Powder Diffraction (XRD). A ternary compound was confirmed in the present work. The liquidus composition in equilibrium with the ternary compound at 1500 °C were quantified. The isothermal sections of the BaO-SiO2-Al2O3 ternary system at 1400 °C, 1500 °C, 1600 °C, and 1700 °C were calculated. Based on the data acquired, the isothermal section at 1500 °C was constructed.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 308
Author(s):  
Patrik Ternstedt ◽  
Gunilla Runnsjö ◽  
Anders Tilliander ◽  
Jesper Janis ◽  
Nils Å. I. Andersson ◽  
...  

Argon Oxygen Decarburization (AOD) converter slags are known to consist of both liquid and solid phases, but limited information on the slag characteristics has been published in the open literature. Therefore, a new methodology to study the characteristics of slag samples taken from the AOD converter process during production was developed based on petrography. The results show that the preparations of the slag samples using the borax method are suitable to use when determining the chemical composition of AOD slag samples using the X-ray fluorescence (XRF) method. The results also showed that both the light optical microscopy (LOM) method and a method combining scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) can be used to characterize the slag samples and that the correlation between the methods was found to be good. This means that it is possible to use the faster LOM method instead of the more complicated SEM-EDS method to characterize AOD slag samples. Finally, the results show that the difference between calculated values based on stoichiometry and measured data for Ca and Cr in AOD slags are 11.7 mass% and 11.3 mass%, respectively. This is considered to be a good agreement for industrial samples.


Author(s):  
Sevilay Demirci ◽  
Vedat Adiguze ◽  
Omer Sahin

In this study, an economic separation method was suggested with the use of phase equilibria in order to ensure the recycling of ZnCl2 whose industrial waste amount is very high and to prevent it to form an environmental pollution. Sodium chloride-zinc chloride-water systems were examined with the isothermal method at temperatures of 298, 313 and 333 K. The analyses of the liquid and solid phases were used to determine the composition of the solid phase using the Schreinemakers graphic method. The solid-liquid phase equilibrium and viscosity data belonging to all ternary systems were identified and the solubility and viscosity changes with temperature were compared. The viscosity values were inversely proportional to the temperature as the amount of ZnCl2 in the solution increased. NaCl, 2NaCl ZnCl2 nH2O (n: 2, 0), ZnCl2 salts were observed at 298, 313, 333 K in the solid phases which are at equilibrium with the liquid phase at the invariant point.


1997 ◽  
Vol 52 (12) ◽  
pp. 1461-1466 ◽  
Author(s):  
P. Schmidt ◽  
O. Bosholm ◽  
H. Oppermann

Abstract The phase Bi2O2Te exists in the pseudobinary system Bi2O3/Bi2Te3. The thermal behaviour of Bi2O2Te was determined by DTA and X-ray analysis: The phase exists up to 620 °C and decomposes into the solid phases Bi12TeO20, Bi10Te2O19 [1] and liquid BiTe. The relations of the phase coexistences in the pseudobinary system and in the ternary area Bi2O3/TeO2/Bi2Te3/Te were investigated by solid state reactions, chemical transport reactions, and by total pressure measurements.


1996 ◽  
Vol 437 ◽  
Author(s):  
P. Kroll ◽  
A. Greiner ◽  
R. Riedel ◽  
S. Bender ◽  
R. Franke ◽  
...  

AbstractWe present results of Si K-edge XANES-investigations for novel Si-C-N containing solid phases prepared by annealing of Si(NCN)2 at temperatures between room temperature (RT) and 1600°C. The chemical equivalence of the NCN-group arid oxygen as a ligand of silicon is confirmed. The spectra show the presence of an intermediate crystalline phase and its decomposition. Furthermore the recrystallisation of a Si3N4/SiC composite material and its dependence on temperature can be seen.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 958 ◽  
Author(s):  
Cuiping Wang ◽  
Xianjie Zhang ◽  
Lingling Li ◽  
Yunwei Pan ◽  
Yuechao Chen ◽  
...  

The phase equilibria of the Co-Ti-Ta ternary system at 1000 °C, 1100 °C, and 1200 °C were experimentally investigated using an electron probe microanalyzer and X-ray diffraction. Experimental results show that: (1) No ternary compound exists in the studied isothermal sections; (2) the β(Ti) and β(Ta) phases form the continuous solid solution β(Ti,Ta) in the Ti-Ta side; (3) the solubility of Ta in the (αCo) is less than 5%; (4) the phases of Co2Ti(h) and γ-Co2Ta, Co2Ti(c) and β-Co2Ta form the continuous solid solutions Co2(Ta,Ti)(h) and Co2(Ta,Ti)(c), respectively.


Author(s):  
Samira Z. Imamaliyeva ◽  
Ganira I Alakbarzade ◽  
Dunya M. Babanly ◽  
Marina V. Bulanova ◽  
Vagif A. Gasymov ◽  
...  

The phase equilibria in the Tl2Te–TlBiТe2–TlTbTe2 concentration area of the Tl–Bi–Tb-Te quaternary system were investigated by using the differential thermal analysis and powder X-ray diffraction techniques. The diagram of the solid-phase equilibria of this system at room temperature was constructed. It was established that the Tl9BiTe6–Tl9TbTe6 section divides the Tl2Te–TlBiТe2–TlTbTe2 system into two independent subsystems. It was found that the Tl2Te–Tl9BiTe6–Tl9TbTe6 subsystem is characterized by the formation of a wide field of solid solutions with a Tl5Te3 structure (δ-phase) that occupy more than 90% of the area of the concentration triangle. The results of X-ray phase analysis of alloys of the Tl9BiTe6–Tl9TbTe6–TlTbTe2–TlBiТe2 subsystem showed the formation of wide regions of solid solutions based on TlTbTe2 and TlBiTe2 along the section of TlTbTe2–TlBiTe2 ((β1- and β2-phases) and made it possible to determine the location of the heterogeneous phase regions in this subsystem. The parameters of crystal lattices of mutually saturated compositions of the β1-, β2-, and δ-phases are calculated from powder diffraction patterns.The paper also presents some polythermal sections, isothermal sections at 740 and 780 K of the phase diagram, as well as projections of the liquidus and solidus surfaces of the Tl2Te–Tl9BiТe6–Tl9TbTe6 subsystem. The liquidus surface consists of three fields of the primary crystallization of α (Tl2Te)-, δ- and β1-phase. The constructed isothermal sections clearly demonstrate that the directions of the tie lines do not coincide with the T–x planes of the studied internal sections, which is characteristic of non-quasi-binary polythermal sections. The obtained new phases are of interest as potential thermoelectric and magnetic materials.


Sign in / Sign up

Export Citation Format

Share Document