Environmental concerns and responses in small-scale stone quarries in Nairobi

2000 ◽  
Vol 11 (2) ◽  
pp. 28-38 ◽  
Author(s):  
Jill Wells
2020 ◽  
pp. 57-63
Author(s):  
Tiago F. Lopes ◽  
Rafał M. Łukasik

Biorefineries are emerging as the proper route to defeat climate change and other social, socio-economic and environmental concerns. So far, no residual lignocellulosic biomass-based biorefineries have been yet industrially implemented, mainly due to its economic viability. This article exposes some elements that may help overcome the bottlenecks associated to its social, economic and environmental sustainability: small-scale approaches, biomass valorisation through added-value products and near-zero effluent.


2018 ◽  
Vol 144 ◽  
pp. 04011
Author(s):  
S. Shanmuga Priya ◽  
Sneha Reddy ◽  
Priyadarshini Balachandar ◽  
Sanober Wadhwania

The environmental concerns have led to the urge of the usage of non-conventional energy resources like solar, wind, thermal, geothermal etc. which provide enormous source of energy without causing any further diminution of the environment. Instead of the conventional HVAC systems that cause colossal environmental perils, usage of liquid desiccants in coming in vogue whereby reducing ecological threats. Moreover, solar assisted systems provide further impulse to such systems. This paper discusses about the various comparisons between liquid desiccants: Lithium chloride, Potassium formate and Calcium chloride and concludes that potassium formate is the best desiccant to be used among the three. Potassium formate (HCOOK) is used which is cheaper and less corrosive as compared to the other aqueous salts, and has a negative crystallization temperature. Potassium formate is a new liquid desiccant and thus, not much research is available currently. The weather conditions of Manipal provide an appropriate condition for the experimentations of solar aided liquid desiccant evaporative cooling systems due to its humid climate and intense solar radiation obtained. The small scale experimentation also encounters the problem of liquid desiccant carryover by the air flow, with the help of clay based membranes which are again cheap, environmentally benign and obtained in a facile way. The projected system takes complete advantage of pure solar energy aimed at the regeneration of liquid desiccant.


Author(s):  
Fred H. Besthorn

The earth's climatic and environmental conditions appear to be going through rapid and dramatic changes. Social work has traditionally distinguished itself by claiming a particular focus on person–environment transactions. The balance between the person and the environment has not been easy to maintain—especially with the environmental construct often becoming constricted to small-scale personal space and existing social systems. In the context of a growing environmental crisis and international awareness of the earth's tenuous ecological condition, social work can reclaim its traditional commitment to environmental concerns and find new ways to express and operationalize these concerns in a rapidly changing world.


Author(s):  
Mikael Höök ◽  
Dean Fantazzini ◽  
André Angelantoni ◽  
Simon Snowden

Current world capacity of hydrocarbon liquefaction is around 400 000 barrels per day, providing a marginal share of the global liquid fuel supply. This study performs a broad review of technical, economic, environmental and supply chain issues related to coal-to-liquids (CTL) and gas-to-liquids (GTL). We find three issues predominate. First, significant amounts of coal and gas would be required to obtain anything more than a marginal production of liquids. Second, the economics of CTL plants are clearly prohibitive, but are better for GTL. Nevertheless, large-scale GTL plants still require very high upfront costs, and for three real-world GTL plants out of four, the final cost has been so far approximately three times that initially budgeted. Small-scale GTL holds potential for associated gas. Third, both CTL and GTL incur significant environmental impacts, ranging from increased greenhouse gas emissions (in the case of CTL) to water contamination. Environmental concerns may significantly affect growth of these projects until adequate solutions are found.


2019 ◽  
Vol 42 ◽  
Author(s):  
William Buckner ◽  
Luke Glowacki

Abstract De Dreu and Gross predict that attackers will have more difficulty winning conflicts than defenders. As their analysis is presumed to capture the dynamics of decentralized conflict, we consider how their framework compares with ethnographic evidence from small-scale societies, as well as chimpanzee patterns of intergroup conflict. In these contexts, attackers have significantly more success in conflict than predicted by De Dreu and Gross's model. We discuss the possible reasons for this disparity.


2000 ◽  
Vol 179 ◽  
pp. 403-406
Author(s):  
M. Karovska ◽  
B. Wood ◽  
J. Chen ◽  
J. Cook ◽  
R. Howard

AbstractWe applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


Author(s):  
R. Gronsky

It is now well established that the phase transformation behavior of YBa2Cu3O6+δ is significantly influenced by matrix strain effects, as evidenced by the formation of accommodation twins, the occurrence of diffuse scattering in diffraction patterns, the appearance of tweed contrast in electron micrographs, and the generation of displacive modulation superstructures, all of which have been successfully modeled via simple Monte Carlo simulations. The model is based upon a static lattice formulation with two types of excitations, one of which is a change in oxygen occupancy, and the other a small displacement of both the copper and oxygen sublattices. Results of these simulations show that a displacive superstructure forms very rapidly in a morphology of finely textured domains, followed by domain growth and a more sharply defined modulation wavelength, ultimately evolving into a strong <110> tweed with 5 nm to 7 nm period. What is new about these findings is the revelation that both the small-scale deformation superstructures and coarser tweed morphologies can result from displacive modulations in ordered YBa2Cu3O6+δ and need not be restricted to domain coarsening of the disordered phase. Figures 1 and 2 show a representative image and diffraction pattern for fully-ordered (δ = 1) YBa2Cu3O6+δ associated with a long-period <110> modulation.


2006 ◽  
Vol 37 (3) ◽  
pp. 131-139 ◽  
Author(s):  
Juliane Degner ◽  
Dirk Wentura ◽  
Klaus Rothermund

Abstract: We review research on response-latency based (“implicit”) measures of attitudes by examining what hopes and intentions researchers have associated with their usage. We identified the hopes of (1) gaining better measures of interindividual differences in attitudes as compared to self-report measures (quality hope); (2) better predicting behavior, or predicting other behaviors, as compared to self-reports (incremental validity hope); (3) linking social-cognitive theories more adequately to empirical research (theory-link hope). We argue that the third hope should be the starting point for using these measures. Any attempt to improve these measures should include the search for a small-scale theory that adequately explains the basic effects found with such a measure. To date, small-scale theories for different measures are not equally well developed.


Sign in / Sign up

Export Citation Format

Share Document