scholarly journals Strength Characteristics of Mortar Containing Different Sizes Glass Powder

2014 ◽  
Vol 5 (1) ◽  
pp. 11-16
Author(s):  
N. Tamanna ◽  
N. Mohamed Sutan ◽  
I. Yakub ◽  
D. T. C. Lee

 A greater portion of nonrecyclable waste glass is accumulated on landfills creating a serious environmental problem. Recent studies have been carried out to utilize the waste glass in construction as partial replacement of cement. This paper investigates the fineness properties of four sizes glass particles and strength characteristics of mortar in which cement is partially replaced with glass powder in the replacement level with 10%, 20%, 30% and 40%. Mortar cubes containing with varying particle sizes in the ranges of 212 μm, 75 μm, 63-38 μm and lower than 38 μm and in a water to cement ratio 0f 0.50 and 0.45 have been prepared. Room temperature and relative humidity have been maintained 32º and 90% respectively during the curing process. Replacement of 10% cement with glass powder reveals the higher compressive strength at 28days than other levels of replacement. The reduction in compressive strength increases with the level of cement replacement.

2014 ◽  
Vol 695 ◽  
pp. 647-650 ◽  
Author(s):  
Nafisa Tamanna ◽  
Norsuzailina Mohamed Sutan ◽  
Ibrahim Yakub ◽  
Delsye Teo Ching Lee ◽  
Ezzaq Farhan Ahmad

Recent studies have been carried out to utilize waste glass in construction as partial cement replacement. This paper investigates the formation of Calcium Silicate Hydrate (C-S-H) and strength characteristics of mortar in which cement is partially replaced with glass powder by replacement level of 10%, 20% and 30%. Mortar cubes containing varying particle sizes in the ranges of 150-75μm, 63-38 μm and lower than 38 μm and in a water to cement ratio of 0.45 and 0.40 have been prepared. Replacement by 10% cement with glass powder reveals high compressive strength and produces more C-S-H at 28 days than other levels of replacement.


Author(s):  
Harsh Vaghela

: In this examination an endeavor is made to contemplate the impact of waste glass power in Concrete utilizing waste glass, which is non biodegradable and not reasonable to landfill. This examination is done to utilize such waste materials into development enterprises with the goal that our current circumstance is free to one of the significant contamination created by the assembling ventures. The primary point of this investigation is to use of waste glass power as a halfway substitution of fine total. In this examination the point is to decide the level of glass substitution, bringing about ideal compressive strength. Substantial ostensible blend of M20 with various rates of Glass power has been assessed according to IS 2386(part IV) and IS 383. Squander glass powder was supplant with fine total in different rates, for example, 5%,10%,15%. Reference substantial blend is likewise made for relative reasons.


Author(s):  
Oluwarotimi Olofinnade ◽  
Cynthia Chigere ◽  
David Nduka ◽  
Opeyemi Joshua ◽  
Babatunde Ogunbayo

Due to the increasing need for sustainability, the need for a cleaner environment and resources conservation has now become very important. This study investigates the possible utilization of waste glass powder combined with pulverized fired clay brick wastes as a partial replacement for Portland cement in the production of mortar. The fired clay bricks and glasses were sourced as waste materials and then crushed into powder form. It is then combined and used to partially substitute Portland cement in the mortar at replacement levels of 0, 5, 10, 20, 25, 30, 40 and 50% using a mix ratio of 1:2.75 at 0.5 water-binder ratios. Physical, chemical and morphological characterization was carried out on the pulverized materials. Further, the compressive strength test was carried out on casted 100 mm cube samples after curing by immersion in water. Obtained results revealed the pozzolanic reactivity potential of the blended waste glass and fired clay brick powder due to their amorphousness and high silica content, while also exhibiting similar oxides compositions. Moreover, the obtained compressive strength results of the blended mortar depict improved strength especially at an optimum value of 15% cement substitute with the blended fired clay brick and glass powder compare to the control. It is therefore suggested that blended mix of waste glass and fired clay brick powder with cement can be used in mortar component instead of open disposal in a landfill.


2020 ◽  
Vol 6 (12) ◽  
pp. 2332-2343
Author(s):  
Fasih Ahmed Khan ◽  
Khan Shahzada ◽  
Qazi Sami Ullah ◽  
Muhammad Fahim ◽  
Sajjad Wali Khan ◽  
...  

This paper presents the study carried out on the utilization of Waste Glass Powder (WGP) as supplementary cementitious material in concrete. The evaluation of the influence of WGP on the mechanical properties of concrete was carried out by casting and testing of concrete samples as per ASTM standards (cylinders and beam elements). The control samples were designed to represent field conditions with a target compressive strength of 20,000 kPa. The Portland cement in concrete was substituted with WGP in proportions of 0%-35% by weight, in increments of 5%. Two curing domains were adopted in the preparation of the test samples to evaluate the effect of pozzolanic material wherein the tested samples were cured for 28, 56, and 84 days. The study results indicated a reduction in compressive strength of concrete up to 10% with partial replacement of cement with 25% of WGP when standard curing of 28 days was adopted. Furthermore, with the same replacement proportion and prolonged curing for 84 days, the gap in strength reduction was reduced by 5%. However, a significant decrease in workability was noted between the control concrete samples and glass powder infused concrete. Furthermore, the Waste Glass Powder Concrete (WGPC) exhibited an improved flexural strength with the modulus of rupture for WGPC being 2% higher than control concrete at the age of 84 days. Based on the results of this study it was concluded that 25% replacement of cement with WGP provides an optimum replacement ratio. Doi: 10.28991/cej-2020-03091620 Full Text: PDF


Author(s):  
Oluwarotimi M. Olofinnade ◽  
Julius M. Ndambuki ◽  
Anthony N. Ede ◽  
Colin Booth

Use of waste materials in concrete is now a global trend for efficient waste management so as to achieve a sustainable green environment and with the added advantages of preserving the natural resources as well as producing a better performing concrete. This study examined the properties of concrete containing ground waste glass powder (GP) as partial replacement for cement. The waste glass was finely grounded into powder and the morphology imagery of the powder materials was carried out using scanning electron microscopy (SEM). Moreover, the chemical composition of the glass powdered material was determined using X-ray fluorescence (XRF). Laboratory tests were carried out to determine the strength activity index, workability, split tensile and compressive strength properties of the concrete with 0%, 15%, 18%, 21%, 24%, 27% and 30% partial replacement of cement with the ground waste glass powder. The results showed that the oxides composition of the glass powder meets the requirements for pozzolanic material, while the SEM morphology shows materials of amorphous flaky solid masses, and based on the 28-day strength activity index, concrete containing 21% cement replacement shows a higher strength index above therecommended 75%. It was also observed that workability of the concrete reduced with increase in percentage glass content while significant improvement of the compressive strength of the concrete was achieved at 21% cement replacement, after which a decrease in strength with increasing percentage glass content was observed. The revealed results were confirmed by the microstructural examination using SEM showing a denser concrete at 21% cement replacement but increase porosityas the glass content increases. However, a decrease in split tensile strength was observed with increasing glass content. The results clearly showed that it is possible to produce moderate strength sustainable concrete for structural application using 20% glass powder as cement replacement.


2018 ◽  
Vol 7 (2) ◽  
pp. 63 ◽  
Author(s):  
Bassam A. Tayeh

Waste materials, such as glass, marble, and timber, are pressing environmental problems worldwide, and their environmental impact can be best overcome by reusing them. This research mainly aims to determine the impact of using waste materials, such as crushed glass, crushed marble, and burned wood in powder form, as partial replacements for cement on the compressive strength of concrete. Mechanical properties (e.g., compressive strength) and physical properties (e.g., workability and unit weight) were investigated. The powdered waste materials (after passing through sieve #200) were partially replaced with cement by ratios of 10%, 20%, and 30%. Compressive strength was tested on the 7th, 28th, and 56th days. Results showed that workability decreased as the partial replacement level of glass powder, marble powder, and timber ash increased. The results also showed a decrease in the compressive strength of concrete when the replacement level was increased from 10% to 30% for each waste material.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2073
Author(s):  
Qiubai Deng ◽  
Zhenyu Lai ◽  
Rui Xiao ◽  
Jie Wu ◽  
Mengliang Liu ◽  
...  

Waste glass is a bulk solid waste, and its utilization is of great consequence for environmental protection; the application of waste glass to magnesium phosphate cement can also play a prominent role in its recycling. The purpose of this study is to evaluate the effect of glass powder (GP) on the mechanical and working properties of magnesium potassium phosphate cement (MKPC). Moreover, a 40mm × 40mm × 40mm mold was used in this experiment, the workability, setting time, strength, hydration heat release, porosity, and microstructure of the specimens were evaluated. The results indicated that the addition of glass powder prolonged the setting time of MKPC, reduced the workability of the matrix, and effectively lowered the hydration heat of the MKPC. Compared to an M/P ratio (MgO/KH2PO4 mass ratio) of 1:1, the workability of the MKPC with M/P ratios of 2:1 and 3:1 was reduced by 1% and 2.1%, respectively, and the peak hydration temperatures were reduced by 0.5% and 14.6%, respectively. The compressive strength of MKPC increased with an increase in the glass powder content at the M/P ratio of 1:1, and the addition of glass powder reduced the porosity of the matrix, effectively increased the yield of struvite-K, and affected the morphology of the hydration products. With an increase in the M/P ratio, the struvite-K content decreased, many tiny pores were more prevalent on the surface of the matrix, and the bonding integrity between the MKPC was weakened, thereby reducing the compressive strength of the matrix. At less than 40 wt.% glass powder content, the performance of MKPC improved at an M/P ratio of 1:1. In general, the addition of glass powders improved the mechanical properties of MKPC and reduced the heat of hydration.


2019 ◽  
Vol 10 (1) ◽  
pp. 12-21
Author(s):  
Abebe Demissew ◽  
Fekadu Fufa ◽  
Sintayehu Assefa

Concrete is a mixture of aggregates and binders. From concrete ingredients, the binder and the costliest and environmental-unfriendly element is cement, which is an ecological unsociable process due to the discharge of CO2 gas into the atmosphere and ecological degradation. Coffee husk (CH) has been considered as a category of agriculture by-product; as its quantity rises, the disposal of it is becoming an environmental problem. Hence, this study investigated the suitability of coffee husk ash (CHA) as a partial replacement for ordinary Portland cement (OPC) in conventional concrete production. Initially, CH samples were collected from different coffee treatment centres. The CHA was then ground and its chemical and physical properties were investigated using Atomic Absorption Spectrophotometer method. After that, the pastes containing OPC and CHA at different levels of replacement were investigated. For this purpose, six different concrete mixes with CHA replacement 0, 2, 3, 5, 10, and 15% of the OPC were prepared for 25MPa conventional concrete with water to cement ratio of 0.5 and 360 kg/m3 cement content. The results of the study show that, up to 10% replacement of OPC by CHA achieved advanced compressive strength at all test ages, i.e. 7, 14, and 28 days of age using compressive test machine.


2021 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Marwa Saadi Mhmood

AbstractA quaternary supplementary cementitious materials as partial replacement of ordinary Portland cement decreases CO2 emission. This paper has investigated the properties of mortars made from different quaternary blends of wood ash, steel slag powder and glass powder with ordinary Portland cement at different replacement levels of 0, 24, 25, and 30% by weight of the binder. The blended mortar mixtures tested for flow, compressive strength and density. The results showed that the flow of mortars is decreased with the combined use of steel slag powder, glass powder, and wood ash compared with control mix. Compressive strength reduced with the combination of steel slag powder, glass powder and wood ash but this reduction effects is acceptable especially at 24% replacement contain super-plasticizer compared with the ecological benefit.


Sign in / Sign up

Export Citation Format

Share Document