scholarly journals POSSIBILITIES OF THE SAGA GIS IN THE STUDY AND MAPPING OF THE DEBRIS FLOW HAZARD OF THE BAIKAL MOUNTAIN COUNTRY

2021 ◽  
Vol 1 ◽  
pp. 184-193
Author(s):  
Vladimir P. Stupin

The possibilities and limitations of SAGA GIS for processing DEM and remote sensing materials of free access in the interests of specialized mapping of debris flow hazard in the Baikal region are considered. The results of processing the SRTM and ASTER GRID DEMS, as well as the spectrosonal images obtained from the Landsat-8 and Sentinel-2 satellites in the SAGA environment are compared. The most effective tools of GIS-analysis of territories from the point of view of the potential hazard assessment of debris flows based on remote sensing data are determined.

2020 ◽  
Vol 1 (2) ◽  
pp. 28-40
Author(s):  
Vladimir P. Stupin

The analysis of open access remote sensing materials (satellite images and digital elevation models) from the point of view of their use for the study and mapping of the debris flow hazard of the Baikal mountain country is carried out. Descriptive signs of mudflow phenomena are described, the age limits of their interpretation are substantiated. Maps of debris flow hazard of various territories of the studied region are given.


2020 ◽  
Vol 12 (21) ◽  
pp. 3539
Author(s):  
Haifeng Tian ◽  
Jie Pei ◽  
Jianxi Huang ◽  
Xuecao Li ◽  
Jian Wang ◽  
...  

Garlic and winter wheat are major economic and grain crops in China, and their boundaries have increased substantially in recent decades. Updated and accurate garlic and winter wheat maps are critical for assessing their impacts on society and the environment. Remote sensing imagery can be used to monitor spatial and temporal changes in croplands such as winter wheat and maize. However, to our knowledge, few studies are focusing on garlic area mapping. Here, we proposed a method for coupling active and passive satellite imagery for the identification of both garlic and winter wheat in Northern China. First, we used passive satellite imagery (Sentinel-2 and Landsat-8 images) to extract winter crops (garlic and winter wheat) with high accuracy. Second, we applied active satellite imagery (Sentinel-1 images) to distinguish garlic from winter wheat. Third, we generated a map of the garlic and winter wheat by coupling the above two classification results. For the evaluation of classification, the overall accuracy was 95.97%, with a kappa coefficient of 0.94 by eighteen validation quadrats (3 km by 3 km). The user’s and producer’s accuracies of garlic are 95.83% and 95.85%, respectively; and for the winter wheat, these two accuracies are 97.20% and 97.45%, respectively. This study provides a practical exploration of targeted crop identification in mixed planting areas using multisource remote sensing data.


2021 ◽  
Vol 6 (2) ◽  
pp. 86
Author(s):  
Bayu Raharja ◽  
Agung Setianto ◽  
Anastasia Dewi Titisari

Using remote sensing data for hydrothermal alteration mapping beside saving time and reducing  cost leads to increased accuracy. In this study, the result of multispectral remote sensing tehcniques has been compare for manifesting hydrothermal alteration in Kokap, Kulon Progo. Three multispectral images, including ASTER, Landsat 8, and Sentinel-2, were compared in order to find the highest overall accuracy using principle component analysis (PCA) and directed component analysis (DPC). Several subsets band combinations were used as PCA and DPC input to targeting the key mineral of alteration. Multispectral classification with the maximum likelihood algorithm was performed to map the alteration types based on training and testing data and followed by accuracy evaluation. Two alteration zones were succeeded to be mapped: argillic zone and propylitic zone. Results of these image classification techniques were compared with known alteration zones from previous study. DPC combination of band ratio images of 5:2 and 6:7 of Landsat 8 imagery yielded a classification accuracy of 56.4%, which was 5.05% and 10.13% higher than those of the ASTER and Sentinel-2 imagery. The used of DEM together with multispectral images was increase the accuracy of hydrothermal alteration mapping in the study area.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2401 ◽  
Author(s):  
Chuanliang Sun ◽  
Yan Bian ◽  
Tao Zhou ◽  
Jianjun Pan

Crop-type identification is very important in agricultural regions. Most researchers in this area have focused on exploring the ability of synthetic-aperture radar (SAR) sensors to identify crops. This paper uses multi-source (Sentinel-1, Sentinel-2, and Landsat-8) and multi-temporal data to identify crop types. The change detection method was used to analyze spectral and indices information in time series. Significant differences in crop growth status during the growing season were found. Then, three obviously differentiated time features were extracted. Three advanced machine learning algorithms (Support Vector Machine, Artificial Neural Network, and Random Forest, RF) were used to identify the crop types. The results showed that the detection of (Vertical-vertical) VV, (Vertical-horizontal) VH, and Cross Ratio (CR) changes was effective for identifying land cover. Moreover, the red-edge changes were obviously different according to crop growth periods. Sentinel-2 and Landsat-8 showed different normalized difference vegetation index (NDVI) changes also. By using single remote sensing data to classify crops, Sentinel-2 produced the highest overall accuracy (0.91) and Kappa coefficient (0.89). The combination of Sentinel-1, Sentinel-2, and Landsat-8 data provided the best overall accuracy (0.93) and Kappa coefficient (0.91). The RF method had the best performance in terms of identity classification. In addition, the indices feature dominated the classification results. The combination of phenological period information with multi-source remote sensing data can be used to explore a crop area and its status in the growing season. The results of crop classification can be used to analyze the density and distribution of crops. This study can also allow to determine crop growth status, improve crop yield estimation accuracy, and provide a basis for crop management.


Author(s):  
L. T. Huang ◽  
W. L. Jiao ◽  
T. F. Long ◽  
C. L. Kang

Abstract. The accurate acquisition of land surface reflectance (SR) data determines the accuracy of ground objects recognition, classification and land surface parameter inversion using remote sensing data, which is the basis of remote sensing data application. In this study, a Control No-Changed Set (CNCS) radiometric normalization method is proposed to realize spectral information transformation of multi-sensor data, which is based on the Iteratively Reweighted Multivariate Alteration Detection (IR-MAD), and includes automatic selection and step-by-step optimization of no-change pixels. The No-Changed set (NC) is obtained by selecting the original no-change pixels between the target image and the reference image according to the linear relationship. In the obtained original no-change regions, IR-MAD rules with iterative control are used to fix the final no-change pixels, after regression modeling and calculation, the normalized images are obtained. The method is tested on multi-images from multi-sensors in three groups of experiments (GF-1 WFV and Landsat-8 OLI, GF-1 PMS and Sentinel-2 MSI, and Landsat-8 OLI and Sentinel-2 MSI) with different landcover areas. The results of radiometric normalization are evaluated qualitatively and quantitatively. The data of the three groups of experiments have a high correlation (correlation coefficient r values > 0.85), indicating that they can be used together as complementary data. The Root Mean Squared Error (RMSE) values calculate from the NC between the reference and normalized target images are much smaller than those between the reference and original target images. The radiometric colour composition effects, and the typical ground objects spectral reflective curves of the reference and normalized target images are very similar after radiometric normalization. These results indicate that the CNCS method considers the linear relationship of the no-change pixels and is effective, stable, and can be used to improve the consistency of SR of multi-images from multi-sensors.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2266
Author(s):  
Ilnas Sahabiev ◽  
Elena Smirnova ◽  
Kamil Giniyatullin

Creating accurate digital maps of the agrochemical properties of soils on a field scale with a limited data set is a problem that slows down the introduction of precision farming. The use of machine learning methods based on the use of direct and indirect predictors of spatial changes in the agrochemical properties of soils is promising. Spectral indicators of open soil based on remote sensing data, as well as soil properties, were used to create digital maps of available forms of nitrogen, phosphorus, and potassium. It was shown that machine learning methods based on support vectors (SVMr) and random forest (RF) using spectral reflectance data are similarly accurate at spatial prediction. An acceptable prediction was obtained for available nitrogen and available potassium; the variability of available phosphorus was modeled less accurately. The coefficient of determination (R2) of the best model for nitrogen is R2SVMr = 0.90 (Landsat 8 OLI) and R2SVMr = 0.79 (Sentinel 2), for potassium—R2SVMr = 0.82 (Landsat 8 OLI) and R2SVMr = 0.77 (Sentinel 2), for phosphorus—R2SVMr = 0.68 (Landsat 8 OLI), R2SVMr = 0.64 (Sentinel 2). The models based on remote sensing data were refined when soil organic matter (SOC) and fractions of texture (Silt, Clay) were included as predictors. The SVMr models were the most accurate. For Landsat 8 OLI, the SVMr model has a R2 value: nitrogen—R2 = 0.95, potassium—R2 = 0.89 and phosphorus—R2 = 0.65. Based on Sentinel 2, nitrogen—R2 = 0.92, potassium—R2 = 0.88, phosphorus—R2 = 0.72. The spatial prediction of nitrogen content is influenced by SOC, potassium—by SOC and texture, phosphorus—by texture. The validation of the final models was carried out on an independent sample on soils from a chernozem zone. For nitrogen based on Landsat 8 OLI R2 = 0.88, for potassium R2 = 0.65, and for phosphorus R2 = 0.31. Based on Sentinel 2, for nitrogen R2 = 0.85, for potassium R2 = 0.62, and for phosphorus R2 = 0.71. The inclusion of SOC and texture in remote sensing-based machine learning models makes it possible to improve the spatial prediction of nitrogen, phosphorus and potassium availability of soils in chernozem zones and can potentially be widely used to create digital agrochemical maps on the scale of a single field.


2020 ◽  
Vol 12 (3) ◽  
pp. 460 ◽  
Author(s):  
Mingyu Liu ◽  
Chuan Xiong ◽  
Jinmei Pan ◽  
Tianxing Wang ◽  
Jiancheng Shi ◽  
...  

Currently, the accurate estimation of the maximum snow water equivalent (SWE) in mountainous areas is an important topic. In this study, in order to improve the accuracy and spatial resolution of SWE reconstruction in alpine regions, the Sentinel-2(MSI) and Landsat 8(OLI) satellite data with the spatial resolution of tens of meters are used instead of the Moderate-resolution Imaging Spectroradiometer (MODIS) data so that the pixel mixing problem is avoided. Meanwhile, geostationary satellite-based and topographic-corrected incoming shortwave radiation is used in the restricted degree-day model to improve the accuracy of radiation inputs. The seasonal maximum SWE accumulation of a river basin in the winter season of 2017–2018 is estimated. The spatial and temporal characteristics of SWE at a fine spatial and temporal resolution are then analyzed. And the results of reconstruction model with different input parameters are compared. The results showed that the average maximum SWE of the study area in 2017–2018 was 377.83 mm and the accuracy of snow cover, air temperature and the radiation parameters all affects the maximum SWE distribution on magnitude, elevation and aspect. Although the accuracy of other forcing parameters still needs to be improved, the estimation of the local maximum snow water equivalent in mountainous areas benefits from the application of high-resolution Sentinel-2 and Landsat 8 data. The joint usage of high-resolution remote sensing data from different satellites can greatly improve the temporal and spatial resolution of snow cover and the spatial resolution of SWE estimation. This method can provide more accurate and detailed SWE for hydrological models, which is of great significance to hydrology and water resources research.


2021 ◽  
Vol 13 (8) ◽  
pp. 1546
Author(s):  
David Hernández-López ◽  
Laura Piedelobo ◽  
Miguel A. Moreno ◽  
Amal Chakhar ◽  
Damián Ortega-Terol ◽  
...  

Earth Observation (EO) imagery is difficult to find and access for the intermediate user, requiring advanced skills and tools to transform it into useful information. Currently, remote sensing data is increasingly freely and openly available from different satellite platforms. However, the variety of images in terms of different types of sensors, spatial and spectral resolutions generates limitations due to the heterogeneity and complexity of the data, making it difficult to exploit the full potential of satellite imagery. Addressing this issue requires new approaches to organize, manage, and analyse remote-sensing imagery. This paper focuses on the growing trend based on satellite EO and the analysis-ready data (ARD) to integrate two public optical satellite missions: Landsat 8 (L8) and Sentinel 2 (S2). This paper proposes a new way to combine S2 and L8 imagery based on a Local Nested Grid (LNG). The LNG designed plays a key role in the development of new products within the European EO downstream sector, which must incorporate assimilation techniques and interoperability best practices, automatization, systemization, and integrated web-based services that will potentially lead to pre-operational downstream services. The approach was tested in the Duero river basin (78,859 km2) and in the groundwater Mancha Oriental (7279 km2) in the Jucar river basin, Spain. In addition, a viewer based on Geoserver was prepared for visualizing the LNG of S2 and L8, and the Normalized Difference Vegetation Index (NDVI) values in points. Thanks to the LNG presented in this paper, the processing, storage, and publication tasks are optimal for the combined use of images from two different satellite sensors when the relationship between spatial resolutions is an integer (3 in the case of L8 and S2).


Author(s):  
Lyudmila Shagarova ◽  
Mira Muratova ◽  
Aray Yermenbay

Free access to moderate resolution remote sensing data enable the worldwide users for their studies of many key geophysical parameters of the Earth’s system, solving various tasks on regular monitoring of natural phenomena, including tasks on ecological space monitoring. This requires multilevel processing of satellite data. The processing results are given for the Aral Sea. This endorheic salt lake is located in Central Asia on the border of Kazakhstan and Uzbekistan. Aral was chosen as an example not by chance as because before shallowing, it was the fourth-largest lake in the world. During the process of drying, the lake was divided into three parts. Currently, the eastern part of the lake has completely disappeared. To the Aral Sea is happening a real ecological disaster. A long-term series of satellite data are needed to monitor the dynamics of changes. The active operation of remote sensing satellites usually exceeds their estimated lifetime. For example, spacecrafts “Terra” and “Aqua”, launched in 1999 and 2002, respectively, have an estimated lifetime of sensor MODIS as 6 years, but they are still used in the NASA EOS program aimed at Earth exploration. With the aging sensors has been a degradation of its optics equipment which affects the quality of the data in some channels. It limits the simple creation of a color image in TRUE colors by put the bands spectral range of visible radiation to corresponding layers RGB-composite. The article describes the technology of making quality images by digital operations with MODIS channels. It eliminate such a problem as “banding” of the image and create new synthesized bands. The results of processing are demonstrated using annual Terra/MODIS data for the autumn period from 2000 to 2019. Besides, taking into account that a water body has been chosen as the object of monitoring, the article presents the options of water surface detection based on spectral indices - indices calculated in mathematical operations with different spectral ranges (channels) of remote sensing data related to certain parameters. Thematic processing in Geomatica software is shown on Landsat-8 images: the sample profile of index image is demonstrated. Taking into account that the survey area exceeds the size of the standard Landsat scene, a mosaic image was made for complete coverage of the region.


Sign in / Sign up

Export Citation Format

Share Document