scholarly journals Boosting the in situ encapsulation of proteins with MIL-100(Fe): the role of strong Lewis acid centers

Author(s):  
Jesús Cases ◽  
Mónica Giménez-Marqués

Encapsulation of biomolecules using Metal-Organic Frameworks (MOFs) to form stable biocomposites has been demonstrated a valuable strategy for their preservation and controlled release, which has been however restricted to specific electrostatic surface conditions. We present a general in situ strategy that promotes the spontaneous MOF growth onto a broad variety of proteins, for the first time, regardless of their surface nature. We demonstrate that MOFs based on cations exhibiting considerable inherent acidity such as MIL-100(Fe) enable biomolecule encapsulation, including alkaline proteins previously inaccesible by the welldeveloped in situ encapsulation with azolate-based MOFs. In particular, MIL-100(Fe) scaffold permits effective encapsulation of proteins with very distinct surface nature, retaining their activity and allowing triggered release under biocompatible conditions. This general strategy will enable an ample use of biomolecules in desired biolotechnological applications.

2018 ◽  
Author(s):  
Yaroslav Boyko ◽  
Christopher Huck ◽  
David Sarlah

<div>The first total synthesis of rhabdastrellic acid A, a highly cytotoxic isomalabaricane triterpenoid, has been accomplished in a linear sequence of 14 steps from commercial geranylacetone. The prominently strained <i>trans-syn-trans</i>-perhydrobenz[<i>e</i>]indene core characteristic of the isomalabaricanes is efficiently accessed in a selective manner for the first time through a rapid, complexity-generating sequence incorporating a reductive radical polyene cyclization, an unprecedented oxidative Rautenstrauch cycloisomerization, and umpolung 𝛼-substitution of a <i>p</i>-toluenesulfonylhydrazone with in situ reductive transposition. A late-stage cross-coupling in concert with a modular approach to polyunsaturated side chains renders this a general strategy for the synthesis of numerous family members of these synthetically challenging and hitherto inaccessible marine triterpenoids.</div>


CrystEngComm ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Ningyue Lu ◽  
Xuelian Zhang ◽  
Xiaoliang Yan ◽  
Dahai Pan ◽  
Binbin Fan ◽  
...  

Flower-like mesoporous sulfated zirconia nanosheets (SZNs) were developed by pyrolysis of in situ sulfated Zr-MOFs for the first time.


2015 ◽  
Vol 6 (3) ◽  
pp. 1640-1644 ◽  
Author(s):  
Li-Li Tan ◽  
Haiwei Li ◽  
Yu-Chen Qiu ◽  
Dai-Xiong Chen ◽  
Xin Wang ◽  
...  

Mechanized monodisperse nano metal–organic frameworks (NMOFs) gated by carboxylatopillar[5]arene (CP5) switches with bio-friendly pH-triggered release capabilities were constructed for the first time as a new stimuli-responsive theranostic hybrid platform.


The Analyst ◽  
2019 ◽  
Vol 144 (16) ◽  
pp. 4887-4896 ◽  
Author(s):  
Mariyemu Tuergong ◽  
Patima Nizamidin ◽  
Abliz Yimit ◽  
Rena Simayi

The optical gas adsorption behaviors of [Zn2(bdc)2(dpNDI)]n membranes were studied for the first time. Under UV light irradiation, they exhibited a greater adsorption response to xylene gas with adsorption capacity of 6.46 μg cm−2 per unit surface.


1999 ◽  
Vol 23 (1) ◽  
pp. 57-66 ◽  
Author(s):  
C Keil ◽  
B Husen ◽  
J Giebel ◽  
G Rune ◽  
R Walther

In the present study we demonstrate for the first time the expression of glycodelin mRNA in the female and male genital tracts of rats using non-radioactive in situ hybridisation. Glycodelin fragment 1 (+41 to +141) shares 100% homology with the human gene sequence. In the ovary, glycodelin mRNA was restricted to granulosa cells. In the uterus, glycodelin mRNA was expressed in all epithelial cells of the endometrium. In the male reproductive tract, glycodelin mRNA was distributed in all epithelial cells of the epididymis, the prostate and the seminal vesicle. However, in the testis, glycodelin mRNA was predominantly found in spermatogonia and in spermatocytes of the seminiferous epithelium. The expression in several reproductive organs of rats offers an excellent tool to study further the physiological role of glycodelin, which is so far thought to act as an immunosuppressive factor.


2017 ◽  
Vol 5 (10) ◽  
pp. 4894-4903 ◽  
Author(s):  
Weiqiang Fan ◽  
Chunfa Li ◽  
Hongye Bai ◽  
Yanyan Zhao ◽  
Bifu Luo ◽  
...  

This paper presents for the first time a novel method of in situ depositing plasmonic Bi nanoparticles on BiOCl nanosheets (Bi/BiOCl) for PEC water splitting.


1981 ◽  
Vol 59 (4) ◽  
pp. 573-582 ◽  
Author(s):  
Anthony P. Russell

The role of the circulatory system in the functioning of the subdigital adhesive pads of geckoes has been the subject of much discussion. However, the morphology and configuration of the blood system in the foot has remained poorly understood, rendering functional interpretation of the blood sinuses simplistic. Here the major arterial vessels of the manus are described for the first time and a discussion of their geometry is presented. Due to the paucity of information concerning the arterial system of the appendages of lizards a description of the major vessels of the antebrachium is also given.The data presented are based on the study of material injected with low-viscosity silicone rubber and then cleared so that vessels may be studied in situ. The data are pertinent to subsequent discussions of the microvasculature of the subdigital lamellae and of reconsiderations of their structure and form.


PalZ ◽  
2021 ◽  
Author(s):  
Pablo Suarez-Gonzalez ◽  
Joachim Reitner

AbstractOoids (subspherical particles with a laminated cortex growing around a nucleus) are ubiquitous in the geological record since the Archean and have been widely studied for more than two centuries. However, various questions about them remain open, particularly about the role of microbial communities and organic matter in their formation and development. Although ooids typically occur rolling around in agitated waters, here, we describe for the first time aragonite ooids forming statically within microbial mats from hypersaline ponds of Kiritimati (Kiribati, central Pacific). Subspherical particles had been previously observed in these mats and classified as spherulites, but these particles grow around autochthonous micritic nuclei, and many of them have laminated cortices, with alternating radial fibrous laminae and micritic laminae. Thus, they are compatible with the definition of the term ‘ooid’ and are in fact very similar to many modern and fossil examples. Kiritimati ooids are more abundant and developed in some ponds and in some particular layers of the microbial mats, which leads to the discussion and interpretation of their formation processes as product of mat evolution, through a combination of organic and environmental factors. Radial fibrous laminae are formed during periods of increased supersaturation, either by metabolic or environmental processes. Micritic laminae are formed in closer association with the mat exopolymer (EPS) matrix, probably during periods of lower supersaturation and/or stronger EPS degradation. Therefore, this study represents a step forward in the understanding of ooid development as influenced by microbial communities, providing a useful analogue for explaining similar fossil ooids.


2020 ◽  
Author(s):  
Louis Redfern ◽  
Maxime Ducamp ◽  
Megan C. Wasson ◽  
Lee Robison ◽  
Florencia Son ◽  
...  

Understanding the mechanical properties of metal–organic frameworks (MOFs) is essential to the fundamental advancement and practical implementations of porous materials. Recent computational and experimental efforts have revealed correlations between mechanical properties and pore size, topology, and defect density. These results demonstrate the important role of the organic linker in the response of these materials to physical stresses. However, the impact of the coordination bond between the inorganic node and organic linker on the mechanical stability of MOFs has not been thoroughly studied. Here, we isolate the role of this node–linker coordination bond to systematically study the effect it plays in the compression of a series of isostructural MOFs, M-UiO-66 (M = Zr, Hf, or Ce). The bulk modulus (i.e. the resistance to compression under hydrostatic pressure) of each MOF is determined by in situ diamond anvil cell (DAC) powder X-ray diffraction measurements and density functional theory (DFT) simulations. These experiments reveal distinctive behavior of Ce-UiO-66 in response to pressures under one GPa. In situ DAC Raman spectroscopy and DFT calculations support the observed differences in compressibility between Zr-UiO-66 and the Ce- analogue. Monitoring changes in bond lengths as a function of pressure through DFT simulations provides a clear picture of those which shorten more drastically under pressure and those which resist compression. This study demonstrates that changes to the node–linker bond can have significant ramifications on the mechanical properties of MOFs.


2020 ◽  
Author(s):  
Louis Redfern ◽  
Maxime Ducamp ◽  
Megan C. Wasson ◽  
Lee Robison ◽  
Florencia Son ◽  
...  

Understanding the mechanical properties of metal–organic frameworks (MOFs) is essential to the fundamental advancement and practical implementations of porous materials. Recent computational and experimental efforts have revealed correlations between mechanical properties and pore size, topology, and defect density. These results demonstrate the important role of the organic linker in the response of these materials to physical stresses. However, the impact of the coordination bond between the inorganic node and organic linker on the mechanical stability of MOFs has not been thoroughly studied. Here, we isolate the role of this node–linker coordination bond to systematically study the effect it plays in the compression of a series of isostructural MOFs, M-UiO-66 (M = Zr, Hf, or Ce). The bulk modulus (i.e. the resistance to compression under hydrostatic pressure) of each MOF is determined by in situ diamond anvil cell (DAC) powder X-ray diffraction measurements and density functional theory (DFT) simulations. These experiments reveal distinctive behavior of Ce-UiO-66 in response to pressures under one GPa. In situ DAC Raman spectroscopy and DFT calculations support the observed differences in compressibility between Zr-UiO-66 and the Ce- analogue. Monitoring changes in bond lengths as a function of pressure through DFT simulations provides a clear picture of those which shorten more drastically under pressure and those which resist compression. This study demonstrates that changes to the node–linker bond can have significant ramifications on the mechanical properties of MOFs.


Sign in / Sign up

Export Citation Format

Share Document