scholarly journals Design of Post Operation Recovery Room Control System Based on Wireless Sensor Network

2019 ◽  
Vol 8 (1) ◽  
pp. 32-40
Author(s):  
Yuni Imanniarti

The recovery room is a room in hospital, where patients are treated after they have undergone surgical operations and recovered from the effects of anesthesia. In  recovery room, patients really need a comfort so that they don't experience physical and psychological stress too much. Comfort for everyone is different, but there are several factors that can make the room more comfortable. Therefore, it will take parameters for this research, namely temperature, humidity and lighting.In this study, we will discuss how to design a wireless sensor network system for controlling the recovery room after cesarean operation and how to test sensors on this system and how to display  processing result data to a smartphone.This research will explain about the system description of room temperature and humidity, UV light and room light intensity based on wireless sensor network using 2 types of nodes, namely sink nodes and control sensor nodes and using the HC-12 wireless module as data sender and receiver between nodes. The data taken is related to the measurement result information data that will be accessed and displayed via Android application in realtime.From the system designed, the error value is obtained with an average temperature value on R1 of 1.16%, R2 is 2.64% and R3 is 5.36%, while for the humidity value on R1 is 3.70%, R2 is 9, 32% and R3 10.54%. For testing the communication distance of 10m, the delay value without barrier is 60 seconds, while with barrier, the delay value is 97 seconds.

2013 ◽  
Vol 774-776 ◽  
pp. 1556-1559 ◽  
Author(s):  
Kai Guo Qian ◽  
Li Mui ◽  
Tian Ma Zuo ◽  
Zhi Qiang Xu

Deployment and coverage, studied how to effectively place and control of sensor nodes and to make WSN covered the monitoring area with the purpose of minimum the energy consumption and prolonging the network life cycle under the premise of guarantee the quality of service (QOS),are the primary problems for construction wireless sensor network. This paper analyzes important factors for resolve the coverage problem such as sensing models and deployment way, followed survey the state-of-the art coverage contro1 techniques and presents an overview and analysis of the solution proposed in recent research literature, Further research directions are pointed out in the end.


2021 ◽  
Vol 4 (1) ◽  
pp. 18
Author(s):  
Emilia Hesti

Wireless Sensor Network technology is a wireless network consisting of several individual sensor nodes that are used to monitor the condition of a place and can interact with its environment by means of sensing, controlling and communication of physical parameters. The application of Wireless Sensor Network Technology to the water turbine as a power plant is used for remote control and monitoring of the water turbine. So that it allows users to get maximum and real time information without having to be in the sensor area, in the sending and receiving of information using the Wireless HC-12 module with a frequency range of 432 MHz. HC12 Wireless Transceiver that can receive information on the Master Controller device and can send requests to the microcontroller on the server device. In this subsystem there is a MAX232 IC as a converter that converts the RS232 level signal from a TTL level signal on the HC12 Wireless module to a data communication that can be displayed on a computer. Keywords: Artificial Inteligent, Embedded System, Microkontroller, Visual Basic, Wireless Sensor Network


Author(s):  
Chao Wang

Background: It is important to improve the quality of service by using congestion detection technology to find the potential congestion as early as possible in wireless sensor network. Methods: So an improved congestion control scheme based on traffic assignment and reassignment algorithm is proposed for congestion avoidance, detection and mitigation. The congestion area of the network is detected by predicting and setting threshold. When the congestion occurs, sensor nodes can be recovery quickly from congestion by adopting reasonable method of traffic reassignment. And the method can ensure the data in the congestion areas can be transferred to noncongestion areas as soon as possible. Results: The simulation results indicate that the proposed scheme can reduce the number of loss packets, improve the throughput, stabilize the average transmission rate of source node and reduce the end-to-end delay. Conclusion: : So the proposed scheme can enhance the overall performance of the network. Keywords: wireless sensor network; congestion control; congestion detection; congestion mitigation; traffic assignment; traffic reassignment.


2018 ◽  
Vol 14 (01) ◽  
pp. 4
Author(s):  
Wang Weidong

To improve the efficiency of the remote monitoring system for logistics transportation, we proposed a remote monitoring system based on wireless sensor network and GPRS communication. The system can collect information from the wireless sensor network and transmit the information to the ZigBee interpreter. The monitoring system mainly includes the following parts: Car terminal, GPRS transmission network and monitoring center. Car terminal mainly consists by the Zigbee microcontroller and peripherals, wireless sensor nodes, RFID reader, GPRS wireless communication module composed of a micro-wireless monitoring network. The information collected by the sensor communicates through the GPRS and the monitoring center on the network coordinator, sends the collected information to the monitoring center, and the monitoring center realizes the information of the logistics vehicle in real time. The system has high applicability, meets the design requirements in the real-time acquisition and information transmission of the information of the logistics transport vehicles and goods, and realizes the function of remote monitoring.


Author(s):  
Edison Pignaton de Freitas ◽  
Tales Heimfarth ◽  
Ivayr Farah Netto ◽  
Carlos Eduardo Pereira ◽  
Armando Morado Ferreira ◽  
...  

2014 ◽  
Vol 701-702 ◽  
pp. 1025-1028
Author(s):  
Yu Zhu Liang ◽  
Meng Jiao Wang ◽  
Yong Zhen Li

Clustering the sensor nodes and choosing the way for routing the data are two key elements that would affect the performance of a wireless sensor network (WSN). In this paper, a novel clustering method is proposed and a simple two-hop routing model is adopted for optimizing the network layer of the WSN. New protocol is characterized by simplicity and efficiency (SE). During the clustering stage, no information needs to be shared among the nodes and the position information is not required. Through adjustment of two parameters in SE, the network on any scale (varies from the area and the number of nodes) could obtain decent performance. This work also puts forward a new standard for the evaluation of the network performance—the uniformity of the nodes' death—which is a complement to merely taking the system lifetime into consideration. The combination of these two aspects provides a more comprehensive guideline for designing the clustering or routing protocols in WSN.


2011 ◽  
Vol 57 (3) ◽  
pp. 341-346 ◽  
Author(s):  
Safdar Khan ◽  
Boubaker Daachi ◽  
Karim Djouani

Overcoming Localization Errors due to Node Power Drooping in a Wireless Sensor NetworkReceived Signal Strength Indication (RSSI) plays a vital role in the range-free localization of sensor nodes in a wireless sensor network and a good amount of research has been made in this regard. One important factor is the battery voltage of the nodes (i.e., the MICAz sensors) which is not taken into account in the existing literature. As battery voltage level performs an indispensable role for the position estimation of sensor nodes through anchor nodes therefore, in this paper, we take into a account this crucial factor and propose an algorithm that overcomes the problem of decaying battery. We show the results, in terms of more precise localization of sensor nodes through simulation. This work is an extension to [1] and now we also use neural network to overcome the localization errors generated due to gradual battery voltage drooping.


2018 ◽  
Vol 14 (8) ◽  
pp. 155014771879584 ◽  
Author(s):  
Danyang Qin ◽  
Yan Zhang ◽  
Jingya Ma ◽  
Ping Ji ◽  
Pan Feng

Due to the advantages of large-scale, data-centric and wide application, wireless sensor networks have been widely used in nowadays society. From the physical layer to the application layer, the multiply increasing information makes the data aggregation technology particularly important for wireless sensor network. Data aggregation technology can extract useful information from the network and reduce the network load, but will increase the network delay. The non-exchangeable feature of the battery of sensor nodes makes the researches on the battery power saving and lifetime extension be carried out extensively. Aiming at the delay problem caused by sleeping mechanism used for energy saving, a Distributed Collision-Free Data Aggregation Scheme is proposed in this article to make the network aggregate data without conflicts during the working states periodically changing so as to save the limited energy and reduce the network delay at the same time. Simulation results verify the better aggregating performance of Distributed Collision-Free Data Aggregation Scheme than other traditional data aggregation mechanisms.


A Wireless Sensor Network (WSN) is a component with sensor nodes that continuously observes environmental circumstances. Sensor nodes accomplish different key operations like sensing temperature and distance. It has been used in many applications like computing, signal processing, and network selfconfiguration to expand network coverage and build up its scalability. The Unit of all these sensors that exhibit sensing and transmitting information will offer more information than those offered by autonomously operating sensors. Usually, the transmitting task is somewhat critical as there is a huge amount of data and sensors devices are restricted. Being the limited number of sensor devices the network is exposed to different types of attacks. The Traditional security mechanisms are not suitable for WSN as they are generally heavy and having limited number of nodes and also these mechanisms will not eliminate the risk of other attacks. WSN are most useful in different crucial domains such as health care, environment, industry, and security, military. For example, in a military operation, a wireless sensor network monitors various activities. If an event is detected, these sensor nodes sense that and report the data to the primary (base) station (called sink) by making communication with other nodes. To collect data from WSN base Stations are commonly used. Base stations have more resources (e.g. computation power and energy) compared to normal sensor nodes which include more or less such limitations. Aggregation points will gather the data from neighboring sensor nodes to combine the data and forward to master (base) stations, where the data will be further forwarded or processed to a processing center. In this manner, the energy can be preserved in WSN and the lifetime of network is expanded.


Sign in / Sign up

Export Citation Format

Share Document