scholarly journals RESISTANCE ASSESSMENT OF TOMATO (SOLANUM LYCOPERSICUM L.) AND GBOMA (SOLANUM MACROCARPON L.) CULTIVARS AGAINST BACTERIAL WILT CAUSED BY RALSTONIA SOLANACEARUM IN BENIN

2020 ◽  
Vol 32 (2) ◽  
Author(s):  
Ghislain F.G.N. Oussou ◽  
Rachidatou Sikirou ◽  
Sètondji A. P. E. Afoha ◽  
Marie E. E. A. Dossoumou ◽  
Sharif A. Boukari ◽  
...  

Author(s):  
Bitang Bamazi ◽  
Agnassim Banito ◽  
K. D. Ayisah ◽  
Rachidatou Sikirou ◽  
Mathews Paret ◽  
...  

Tomato (Solanum lycopersicum L.) is one of the most important vegetables in Togo. Unfortunately, tomatoes are susceptible to many diseases, among which bacterial wilt caused by Ralstonia solanacearum causes major yield losses. In this study, incidence of bacterial wilt and its distribution was evaluated in the central region of Togo, the major tomato producing area in the country. Overall, 16 localities were surveyed in four prefectures. In each locality, three fields were visited, and the incidence of the disease was recorded, and diseased samples were collected for laboratory investigation. The results showed that bacterial wilt occurred in all the fields visited, indicating a field incidence of 100%, whereas the plant incidence ranged from 10.00±00% to 43.33±3.33%, with an average of 20.94±1.77%. The antibody based Immunostrip test was positive for R. solanacearum in 100% of the visited fields. From 144 samples collected from fields, 45 R. solanacearum isolates were isolated on Modified SMSA media. This survey results show that tomato bacterial wilt is a real threat to tomato production in the central region of Togo.


2018 ◽  
Vol 47 (6) ◽  
pp. 591-600
Author(s):  
Brati Acharya ◽  
Ankit Kumar Ghorai ◽  
Subhramalya Dutta ◽  
Praveen Kumar Maurya ◽  
Subrata Dutta ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Dylan R. Zeiss ◽  
Paul A. Steenkamp ◽  
Lizelle A. Piater ◽  
Ian A. Dubery

Ralstonia solanacearum, the causal agent of bacterial wilt, is one of the most destructive bacterial plant pathogens. This is linked to its evolutionary adaptation to evade host surveillance during the infection process since many of the pathogen’s associated molecular patterns escape recognition. However, a 22-amino acid sequence of R. solanacearum-derived cold shock protein (csp22) was discovered to elicit an immune response in the Solanaceae. Using untargeted metabolomics, the effects of csp22-elicitation on the metabolome of Solanum lycopersicum leaves were investigated. Additionally, the study set out to discover trends that may suggest that csp22 inoculation bestows enhanced resistance on tomato against bacterial wilt. Results revealed the redirection of metabolism toward the phenylpropanoid pathway and sub-branches thereof. Compared to the host response with live bacteria, csp22 induced a subset of the discriminant metabolites, but also metabolites not induced in response to R. solanacearum. Here, a spectrum of hydroxycinnamic acids (especially ferulic acid), their conjugates and derivatives predominated as signatory biomarkers. From a metabolomics perspective, the results support claims that csp22 pre-treatment of tomato plants elicits increased resistance to R. solanacearum infection and contribute to knowledge on plant immune systems operation at an integrative level. The functional significance of these specialized compounds may thus support a heightened state of defense that can be applied to ward off attacking pathogens or toward priming of defense against future infections.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1513
Author(s):  
Herbaud Zohoungbogbo ◽  
Adonis Quenum ◽  
Judith Honfoga ◽  
Jaw-Rong Chen ◽  
Enoch Achigan-Dako ◽  
...  

Finding sources of resistance to bacterial wilt (BW) caused by Ralstonia solanacearum species complex is a crucial step toward the development of improved bacterial wilt-resistant tomato varieties. Here, we evaluated new sources of bacterial wilt-tolerant/resistant tomato lines and identified associated phylotype/sequevar of R. solanacearum strains in Benin. Eighteen F5 lines and five checks were evaluated in two hotspots: the experimental site of the World Vegetable Center, Cotonou Benin, and the Laboratory of Genetics, Biotechnology and Seed Science of the University of Abomey-Calavi. Experiments were laid out in a randomized complete block design with four replicates. Data were collected on bacterial wilt incidence, horticultural and fruit traits and yield components. Across the two experiments, the F5 lines showed no wilting, while the local variety ‘Tounvi’ used as susceptible check showed 57.64% wilting. The wilting was due to BW and was associated with sequevars I-14, I-18 and I-31 of phylotype I. AVTO1803, AVTO1955-6 and H7996 were the highest yielding lines with 20.29 t·ha−1, 17.66 t·ha−1 and 17.07 t/ha, respectively. The sources of resistance to BW can be recommended to national agricultural system for dissemination or used in tomato breeding programs.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1143
Author(s):  
Rudi Hari Murti ◽  
Enik Nurlaili Afifah ◽  
Tri Rini Nuringtyas

Ralstonia solanacearum is the pathogen responsible for wilting, yield losses, and death in tomato plants. The use of resistant cultivars has been proven as the most appropriate solution to controlling this pathogen. Therefore, further study of host-plant resistance mechanisms in tomatoes is urgently needed. 1H-NMR (nuclear magnetic resonance) spectroscopy combined with multivariate data analysis has been used to identify the biochemical compounds that play a crucial role in the defense mechanisms of tomato against bacterial wilt. Eleven metabolites consisting of amino acids, sugars and organic acids were identified and presented at different concentrations in each cultivar. Leucine and valine were determined as distinguishable metabolites of resistant and susceptible cultivars. Permata and Hawaii 7996 as resistant cultivars had a significant decrease of valine after inoculation about 1.5–2 times compared to the susceptible cultivar (GM2). Meanwhile, the resistant cultivars had a higher level of leucine, about 1.3–1.5 times compared to the susceptible ones. Synthesis of leucine and valine are linked as a member of the pyruvate family. Therefore, the decrease in valine may be related to the higher need for leucine to form the leucine-rich receptor, which plays a role in the plant’s immune system against the bacterial wilt.


Author(s):  
Mineyuki Yokoyama ◽  
Takatoshi Yamashita ◽  
Rumi Kaida ◽  
Shigemi Seo ◽  
Kazuhiro Tanaka ◽  
...  

Abstract Water containing ultrafine/nano bubbles (UFBs) promoted the growth of tomato (Solanum lycopersicum) in soil damaged by cultivation of tomato in the previous year or bacterial wilt-like disease, and also promoted the growth of lettuce (Lactuca sativa) when lettuce was grown in the soil damaged by repeated cultivation of lettuce. On the other hand, UFB supply did not affect plant growth in rock wool or healthy soil. Furthermore, the growth of lettuce was not affected by UFB water treatment in the soil damaged by the cultivation of tomato. UFB water partly suppressed the growth of the pathogen of bacteria wilt disease, Ralstonia solanacearum in vitro. These data suggest that UFB water is effective to recover the plant growth from soil damage.


Sign in / Sign up

Export Citation Format

Share Document