scholarly journals NOVEL REPORT OF BOTRYTIS CINEREA CAUSING GREY MOLD DISEASE OF WATERMELON (CITRULLUS LANATUS L.) IN PAKISTAN a

2021 ◽  
Vol 33 (2) ◽  
pp. 299-302
Author(s):  
Salman Ghuffar ◽  
Kashif Rashid ◽  
Muhammad Najeebullah ◽  
Muhammad Z. Ahmed ◽  
Waseem Abbas ◽  
...  

2007 ◽  
Vol 13 (3) ◽  
pp. 177-182 ◽  
Author(s):  
Joo-Hyung Kim ◽  
Ji-Young Min ◽  
Young-Soon Baek ◽  
Yeoung-Seuk Bae ◽  
Heung-Tae Kim
Keyword(s):  

2019 ◽  
Vol 20 (5) ◽  
pp. 1052 ◽  
Author(s):  
Łukasz Tarkowski ◽  
Bram Van de Poel ◽  
Monica Höfte ◽  
Wim Van den Ende

The concept of “Sweet Immunity” postulates that sugar metabolism and signaling influence plant immune networks. In this study, we tested the potential of commercially available inulin-type fructans to limit disease symptoms caused by Botrytis cinerea in lettuce. Spraying mature lettuce leaves, with inulin-type fructans derived from burdock or chicory was as effective in reducing grey mold disease symptoms caused by Botrytis cinerea as spraying with oligogalacturonides (OGs). OGs are well-known defense elicitors in several plant species. Spraying with inulin and OGs induced accumulation of hydrogen peroxide and levels further increased upon pathogen infection. Inulin and OGs were no longer able to limit Botrytis infection when plants were treated with the ethylene signaling inhibitor 1-methylcyclopropene (1-MCP), indicating that a functional ethylene signaling pathway is needed for the enhanced defense response. Soluble sugars accumulated in leaves primed with OGs, while 1-MCP treatment had an overall negative effect on the sucrose pool. Accumulation of γ-aminobutyric acid (GABA), a stress-associated non-proteinogenic amino acid and possible signaling compound, was observed in inulin-treated samples after infection and negatively affected by the 1-MCP treatment. We have demonstrated for the first time that commercially available inulin-type fructans and OGs can improve the defensive capacity of lettuce, an economically important species. We discuss our results in the context of a possible recognition of fructans as Damage or Microbe Associated Molecular Patterns.


Plant Disease ◽  
2020 ◽  
Author(s):  
Shengming Liu ◽  
Liuyuan Fu ◽  
Huanhuan Tan ◽  
Jia Jiang ◽  
Zhiping Che ◽  
...  

Grey mold, caused by the fungus Botrytis cinerea Pers ex Fr., is one of the most destructive spoilage diseases, severely affecting tomato production in Henan Province, China. Spraying fungicides from the flowering to the harvest stage is a necessary measure to reduce losses associated with B. cinerea infection. However, B. cinerea has developed resistance to fungicides in many countries. Boscalid is a succinate dehydrogenase inhibitor (SDHI) fungicide, and was registered for the control of grey mold. In this study, a total of 269 B. cinerea isolates were collected from tomato in commercial greenhouses in different locations of Henan Province, in 2014 and 2015. The sensitivity and resistance of B. cinerea field isolates were determined based on mycelial growth. The effective concentration 50 (EC50) ranged from 0.11 to 15.92 μg ml−1 and 0.16 to 8.54 μg ml−1, in 2014 and 2015, respectively. The frequency of low resistance to boscalid was 12.6% and 7.6%, and moderate resistance were 2.7% and 1.3%, in 2014 and 2015, respectively. No high-resistant isolates were found in Henan Province, China. Mycelial growth, mycelial dry weight, spore production, and pathogenicity were not significantly different between resistant and sensitive phenotypes of the B. cinerea isolates. The results of cross-resistance test showed no correlation between boscalid and carbendazim, procymidone, pyrimethanil, fluazinam or fluopyram. In this study, the succinate dehydrogenase gene B (sdhB), C (sdhC), and D (sdhD) were analyzed and compared in sensitive, low and moderately resistant B. cinerea isolates to boscalid. Results showed point mutations occurred simultaneously at sdhC amino acid positions 85 (G85A), 93 (I93V), 158 (M158V), and 168 (V168I) in 4 out of 10 sensitive isolates, 23 out of 26 low and 5 out of 5 moderately resistant B. cinerea isolates to boscalid. No point mutations were found in the sdhB and sdhD genes of all isolates. Furthermore, no point mutations were found in sdhB, sdhC and sdhD genes in 3 out of 26 low resistant B. cinerea isolates to boscalid. Therefore, we speculate the simultaneous point mutations in the sdhC gene may not be related to the resistance of B. cinerea to boscalid. These results suggested that there might be a substitution mechanism for the resistance of B. cinerea to the SDHI fungicide boscalid.


2020 ◽  
Author(s):  
Pingliang Li ◽  
jian zou ◽  
Yanhan Dong ◽  
jintao Jiang ◽  
Wenxing Liang ◽  
...  

Tetrandrine (TET) is a potent calcium channel blocker used for the treatment of hypertension and inflammation. Currently, TET is predominantly used to treat a variety of human diseases, and there is little information regarding the use of TET against plant pathogens. In this study, we explored the antifungal activity of TET on a plant pathogen, Botrytis cinerea. We show that administration of low concentrations of TET effectively inhibited hyphal growth of fungus grown on potato dextrose agarose, and decreased the virulence of B. cinerea in tomato plants. Real-time PCR revealed that the expression of drug efflux pump related genes (alcohol dehydrogenase 1, multi-drug/pheromone exporter, pleiotropic drug resistance protein 1, and synaptic vesicle transporter) were down-regulated in the presence of TET. Finally, we show that TET acts synergistically with iprodione, resulting in increased inhibition of B. cinerea both in vitro and in vivo. These results indicate that TET might act as an effective antifungal agent in reducing grey mold disease.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1239 ◽  
Author(s):  
Andrés Olea ◽  
Angelica Bravo ◽  
Rolando Martínez ◽  
Mario Thomas ◽  
Claudia Sedan ◽  
...  

Botrytis cinerea is a worldwide spread fungus that causes the grey mold disease, which is considered the most important factor in postharvest losses in fresh fruit crops. Consequently, the control of gray mold is a matter of current and relevant interest for agricultural industries. In this work, a series of phenylpropanoids derived from eugenol were synthesized and characterized. Their effects on the mycelial growth of a virulent and multi-resistant isolate of B. cinerea (PN2) have been evaluated and IC50 values for the most active compounds range between 31–95 ppm. The antifungal activity exhibited by these compounds is strongly related to their chemical structure, i.e., increasing activity has been obtained by isomerization of the double bond or introduction of a nitro group on the aromatic ring. Based on the relationship between the fungicide activities and chemical structure, a mechanism of action is proposed. Finally, the activity of these compounds is higher than that reported for the commercial fungicide BC-1000 that is currently employed to combat this disease. Thus, our results suggest that these compounds are potential candidates to be used in the design of new and effective control with inspired natural compounds of this pathogen.


2002 ◽  
Vol 48 (6) ◽  
pp. 550-554 ◽  
Author(s):  
R S Utkhede ◽  
S Mathur

Experiments were conducted to study the effect of various chemical and biological agents on stem canker caused by Botrytis cinerea Pers.: Fr. on tomato plants grown in sawdust under near-commercial greenhouse conditions. Lesion lengths following treatment with RootShield® and strain S33 of Rhodosporidium diobovatum Newell & Hunter, applied as post-inoculation sprays, were significantly smaller than those in inoculated controls. These treatments also increased fruit yield and decreased the number of dead plants compared with inoculated controls. Decree®, Prestop®, and R. diobovatum S33, applied as sprays, prevented the occurrence of stem canker and increased fruit yield in tomato. The number of dead plants was also smaller with these treatments than with the other treatments and in inoculated controls. These results suggest that, in tomato, post-inoculation sprays of RootShield® and R. diobovatum S33 can reduce lesion lengths, and that a preventive spray of Decree®, Prestop®, and R. diobovatum S33 might prevent stem canker, under near-commercial greenhouse conditions.Key words: biological control, Botrytis cinerea, Bacillus subtilis, Rhodosporidium diobovatum, grey mold.


2017 ◽  
Vol 16 (9) ◽  
pp. 1999-2008 ◽  
Author(s):  
Kang-bo GU ◽  
Dao-jing ZHANG ◽  
Cheng GUAN ◽  
Jia-hui XU ◽  
Shu-lan LI ◽  
...  
Keyword(s):  

2019 ◽  
Vol 8 (2) ◽  
pp. 37-51
Author(s):  
Elsayed E. Wagih ◽  
Hala Abdel Wahab ◽  
Mohamed R. A. Shehata ◽  
Magda M. Fahmy ◽  
Mahmoud A. Gaber

Grey mold caused by Botrytis cinerea, is known to cause great losses in most vegetable and fruit crops. Fifty-one isolates of B. cinerea were collected from grape (BCG) and strawberry (BCS) grown in different Egyptian locations. Variation among isolates was demonstrated using fenhexamid resistance and genetic approaches. Isolates were classified into various pathogenic groups depending on their reactions towards lettuce leaves. Genetic variability was identified in all isolates using transposable elements (TEs) analysis which revealed either the presence or absence of boty and flipper transposons. Furthermore, TEs typing of B. cinerea isolates demonstrated four TE types, on the basis of TE distribution in B. cinerea populations, namely, transposa (having both boty and flipper), flipper (possessing only flipper), boty (having only boty), and vacuma (lacking both boty and flipper elements). Transposa type was predominant (43.1%) and both transposa and vacuma isolate types showed no specialization with respect to host plant or plant location, while flipper type revealed a geographical preference in (BCG) isolates. Pathogenicity was also correlated to TE type as isolates containing transposa type revealed some degree of correlation with virulence behaviour, suggesting that transposa populations have higher pathogenic potential as compared to vacuma ones. The sensitivity of sampled isolates was tested against fenhexamid as one of the most important botryticides. Sensitivity to fenhexamid was shown in all isolates from strawberry and grape, grown in different locations, with low EC50 values between 0.012-0.084 μg/ml. This finding provided a cue for effective usage of fenhexamid for grey mold management. The present work demonstrated a correlation between the distribution of TEs and some fungal features such as isolate source and virulence, but no correlation was found between morphological characteristics, TE type, and sensitivity to fenhexamid. Cluster analysis based on phylogenetic tree showed that the Egyptian isolates branched as a separate divergent group from the others retrieved from GenBank, reflecting the presence of sequence polymorphism between the current isolates of B. cinerea and those previously identified.


Sign in / Sign up

Export Citation Format

Share Document