scholarly journals Two-Dimensional Stress Analysis of Thick Hollow Functionally Graded Sphere Under Non-Axisymmetric Mechanical Loading

Author(s):  
Sandeep Kumar Paul ◽  
Manoj Sahni

In this paper, a functionally graded thick hollow sphere is considered for the analysis of two-dimensional steady state mechanical stress in the radial and circumferential directions under mechanical loading. Modulus of elasticity is varying with continuous nonlinear variation along the radial direction and Poisson’s ratio is kept as constant. The Legendre series and Euler differential equation are used to solve Navier equations. Geometry of the sphere is assumed in spherical coordinate system. Applying mechanical boundary conditions at inner and outer radii, we have carried out the analytical solutions for stresses, strains and displacements. In the numerical example, only internal pressure is varying along circumferential direction and external pressure is kept as zero. Displacements and mechanical stresses are presented graphically and the results are discussed numerically.

2013 ◽  
Vol 3 (3) ◽  
Author(s):  
Mohammad Nejad ◽  
Majid Abedi ◽  
Mohammad Lotfian ◽  
Mehdi Ghannad

AbstractAssuming exponential varying properties in the radial direction and constant Poisson’s ratio, a closed-form analytical solution based on the elasticity theory is obtained to elastic analysis of disks made of functionally graded materials (FGMs) subjected to internal and external pressure. Following this, radial displacement, radial stress, and circumferential stress profiles are plotted for different values of material inhomogeneity constant, as a function of radial direction. The displacements and stresses distributions are compared with the solutions of the finite element method (FEM) and comparison with the corresponding numerical solution indicates that the proposed solution has excellent convergence and accuracy.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
M. Jabbari ◽  
S. M. Mousavi ◽  
M. A. Kiani

In this paper, an analytical method is developed to obtain the solution for the two-dimensional (2D) (r,θ) transient thermal and mechanical stresses in a hollow sphere made of functionally graded (FG) material and piezoelectric layers. The FGM properties vary continuously across the thickness, according to the power functions of radial direction. The temperature distribution as a function of radial and circumferential directions and time is obtained solving the energy equation, using the method of separation of variables and Legendre series. The Navier equations are solved analytically using the Legendre polynomials and the system of Euler differential equations.


2012 ◽  
Vol 29 (1) ◽  
pp. 109-120 ◽  
Author(s):  
H. Xie ◽  
H.-L. Dai ◽  
Y.-N. Rao

AbstractThis paper is concerned with two-dimensional (r, θ) thermoelastic dynamic responses of a long functionally graded hollow cylinder subjected to asysmmetrical thermal and mechanical loads. The material properties, except the Poisson's ratio, are assumed to be temperature independent and vary exponentially and continuously in the radial direction. By means of finite difference method and Newmark method, the motion governing equations of the long FGM hollow cylinder are solved. Comparisons between this paper's results and the corresponding analytical results validate the proposed solution. In addition, the effects of the volume fraction, temperature boundary conditions on the hollow cylinder's deformations and stresses distributions are examined, and many other valuable thermoelastic dynamic characteristics are revealed.


2010 ◽  
Vol 133 (2) ◽  
Author(s):  
Hossein Rastgoftar ◽  
Mohammad Eghtesad ◽  
Alireza Khayatian

In this paper, an analytical method and a partial differential equation based solution to control temperature distribution for functionally graded (FG) plates is introduced. For the rectangular FG plate under consideration, it is assumed that the material properties such as thermal conductivity, density, and specific heat capacity vary in the width direction, and the governing heat conduction equation of the plate is a second-order partial differential equation. Using Lyapunov’s theorem, it is shown that by applying controlled heat flux through the boundary of the domain, the temperature distribution of the plate will approach a desired steady-state distribution. Numerical simulation is provided to verify the effectiveness of the proposed method such that by applying the boundary transient heat flux, in-domain distributed temperature converges to its desired steady-state temperature.


2011 ◽  
Vol 264-265 ◽  
pp. 700-705 ◽  
Author(s):  
Amir Hossein Mohazzab ◽  
Mohsen Jabbari

This work studied the theoretical solution for axisymmetric steady-state mechanical and thermal stresses in hollow functionally graded spheres with respect to heat source. The material properties of the FG sphere change continuously across the thickness direction according to the power functions of radial direction. The steady-state temperature, displacements, and stresses are derived due to the general mechanical and thermal boundary conditions as function of radial and circumferential directions. The temperature and Navier equations are solved analytically, using Taylor and Legendre series. With increasing the power law indices the temperature distribution due to heat source is decreased. Circumferential stress and radial displacement due to heat source are decreased as the power law index increases.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
M. Jabbari ◽  
M. Meshkini ◽  
M. R. Eslami

The general solution of steady-state on one-dimensional Axisymmetric mechanical and thermal stresses for a hollow thick made of cylinder Functionally Graded porous material is developed. Temperature, as functions of the radial direction with general thermal and mechanical boundary-conditions on the inside and outside surfaces. A standard method is used to solve a nonhomogenous system of partial differential Navier equations with nonconstant coefficients, using complex Fourier series, rather power functions method and solve the heat conduction. The material properties, except poisson's ratio, are assumed to depend on the variable , and they are expressed as power functions of .


2006 ◽  
Vol 06 (04) ◽  
pp. 559-574 ◽  
Author(s):  
ASHRAF M. ZENKOUR

This paper is concerned with the thermoelastic analysis of a functionally graded rotating annular disk subjected to a nonuniform steady-state thermal load. Material properties are assumed to be temperature independent and continuously varying in the radial direction of the annular disk. The variations of Young's modulus, material density, thermal expansion and conductivity coefficients are represented by a novel exponential-law distribution through the radial direction of the disk, but Poission's ratio is kept constant. The governing differential equations are exactly satisfied at every point of the disk. Exact solutions for the temperature and stress fields are derived in terms of an exponential integral and Whittaker's functions. Presented are some results for stress, strain and displacement components due to thermal bending of the rotating disk. The effects of angular velocity, inner and outer temperature loads and material properties on the stress, strain and displacement components are discussed.


2003 ◽  
Vol 70 (1) ◽  
pp. 111-118 ◽  
Author(s):  
M. Jabbari ◽  
S. Sohrabpour ◽  
M. R. Eslami

In this paper, the general theoretical analysis of two-dimensional steady-state thermal stresses for a hollow thick cylinder made of functionally graded material is developed. The temperature distribution is assumed to be a function of radial and circumferential directions with general thermal and mechanical boundary conditions on the inside and outside surfaces. The material properties, except Poisson’s ratio, are assumed to depend on the variable r and they are expressed as power functions of r. The separation of variables and complex Fourier series are used to solve the heat conduction and Navier equations.


Sign in / Sign up

Export Citation Format

Share Document