scholarly journals Addressing Climate Change: What Can Plant Invasion Science and Weed Science Learn From Each Other?

2021 ◽  
Vol 2 ◽  
Author(s):  
Yan Sun ◽  
Behnaz Pourmorad Kaleibar ◽  
Mostafa Oveisi ◽  
Heinz Müller-Schärer

Plant invasion science and weed science, both dealing with harmful plants, have historically developed in separation. This may also be true for how the two fields are addressing the consequences of future climate change. Here, we first conducted a literature survey to explore how researchers in these two disciplines study the effects of climate change, and then identified their characteristic approaches to determine what the disciplines can learn from each other to better understand, predict, and mitigate the outcomes of responses of harmful plants to climate change. Over the past 20 years, we found a much steeper increase in publications dealing with climate change for invasive alien plants (IAP) than for weeds. However, invasion scientists have to date only rarely investigated climate change effects at the local scale, such as on functional traits and population dynamics. In contrast, weed science could benefit from studies at larger scale, such as using a modeling approach to predict changes in weed distributions. Studies assessing the impacts of the target plants on ecosystem properties and on society, and on their management under climate change are important components of weed studies but remain neglected for IAP. This is despite an urgent need, especially because under climate change, abandoned cropland, and areas of high conservation value are facing increasing risk from IAP. We argue that the strengths and diversity of approaches of these two disciplines in studying the effects of climate change are complementary and that closer ties between them would be highly beneficial for both.

2018 ◽  
Vol 11 (2) ◽  
pp. 367-379 ◽  
Author(s):  
Sho Momiyama ◽  
Masaki Sagehashi ◽  
Michihiro Akiba

Abstract Adverse effects of future climate change on water supply systems are of concern. High turbidity caused by abrupt flood, and drought caused by continuous dry days are the major risks. To assess such risks, a comprehensive method to simulate hydrology with high spatiotemporal resolution should be developed. In this study, a series of methods from parameter estimation to future simulation using the Soil and Water Assessment Tool (SWAT) was demonstrated for Sagami Dam reservoir, which is a typical water supply reservoir in Japan. A proposed parameter calibration method by optimizing percent bias followed by optimizing Nash–Sutcliffe efficiency gave good performance of model prediction of the daily average reservoir inflow in the past. Using this model, the changes in inflow under expected climate change were simulated. Three predicted daily climates by the Model for Interdisciplinary Research on Climate version 5 (MIROC5) under three representative concentration pathways, i.e., RCP 2.6, 4.5, and 8.5, in 2081–2100 were used for the simulation, whereas observed daily climate during 1981–2000 was used as the past reference. The risks were discussed by considering their seasonality, indicating increases in flood and drought in June and July, and in February and April, respectively.


2020 ◽  
Author(s):  
Maria Mavrova-Guirguinova

<p>The impact of future climate change under IPCC scenarios RCP4.5 and RCP8.5 on hydrological regimes in plain catchments up to 650 m high and in mountainous areas of Bulgaria is discussed. A hydrological simulation models (TUWmodel) were calibrated on recorded data and ‘forced’ in the selected scenarios with precipitation and air temperature data from ALADIN 5.2, a local version of the French global atmospheric model ARPEGE, downscaled to a grid of 12 km. Simulations for the future periods 2013-2042, 2021-2050 and 2071-2100 are compared to the flows in the reference period 1976-2005.</p><p>Results indicate increased seasonality of flows, with noticeably drier summers and increase of river discharge in winter. In most of the cases the analysis of extreme events suggests significant increases in the frequency of both high‐ and low‐flow events. The change in the extreme runoff with a large repetition period required for the design of flood protection structures and systems has been investigated in regions with different mechanisms for flood generation. With the push of RCP4.5 or RCP8.5 scenarios the significant increase in flood peaks is observed in most of the river basins. There is a general trend of decreasing runoff with a 95% probability of exceedance.</p>


2021 ◽  
Vol 13 (19) ◽  
pp. 10794
Author(s):  
Florian Klopfer ◽  
René Westerholt ◽  
Dietwald Gruehn

Urban areas are amongst the most adversely affected regions by current and future climate change effects. One issue when it comes to measuring, for example, impacts, vulnerabilities, and resilience in preparation of adaptation action is the abundance of conceptual frameworks and associated definitions. Frequently, those definitions contradict each other and shift over time. Prominently, in the transition from the IPCC AR (International Panel on Climate Change Assessment Report) 4 to the IPCC AR 5, a number of conceptual understandings have changed. By integrating common concepts, the literature review presented intends to thoroughly investigate frameworks applied to assess climate change effects on urban areas, creating an evidence base for research and politically relevant adaptation. Thereby, questions concerning the temporal development of publication activity, the geographical scopes of studies and authors, and the dominant concepts as applied in the studies are addressed. A total of 50 publications is identified following screening titles, abstracts, and full texts successively based on inclusion and exclusion criteria. Major findings derived from our literature corpus include a recently rising trend in the number of publications, a focus on Chinese cities, an imbalance in favor of authors from Europe and North America, a dominance of the concept of vulnerability, and a strong influence of the IPCC publications. However, confusion regarding various understandings remains. Future research should focus on mainstreaming and unifying conceptual frameworks and definitions as well as on conducting comparative studies.


2017 ◽  
Vol 14 (2) ◽  
pp. 200-209 ◽  
Author(s):  
Tanmoy Das ◽  
M. Hajong D Majumdar ◽  
RK Tombisana Devi ◽  
T Rajesh

The change in Global climate is due to increasing concentration of greenhouse gases (GHG) in the atmosphere. The earths’ observed climatic changes over the past 50 years are primarily caused by various human activities. The increasing global temperature over the past century by about 0.8°C and expected to rise between 0.9 and 3.5°C by 2100. Such changes will not only have a great effect on the growth and cultivation of different crops but also affect the reproduction, spread and severity of many plant pathogens. Various plant disease models have been developed to incorporate more sophisticated climate predictions at various levels. At the level, the adaptive potential of plant and pathogen populations may prove to be one of the most important predictors of the magnitude of climate change effects. This review highlights various influences of climate change on plant diseases and their effects with suitable examples.SAARC J. Agri., 14(2): 200-209 (2016)


Author(s):  
Denise D. Colombano ◽  
Steven Y. Litvin ◽  
Shelby L. Ziegler ◽  
Scott B. Alford ◽  
Ronald Baker ◽  
...  

AbstractClimate change is altering naturally fluctuating environmental conditions in coastal and estuarine ecosystems across the globe. Departures from long-term averages and ranges of environmental variables are increasingly being observed as directional changes [e.g., rising sea levels, sea surface temperatures (SST)] and less predictable periodic cycles (e.g., Atlantic or Pacific decadal oscillations) and extremes (e.g., coastal flooding, marine heatwaves). Quantifying the short- and long-term impacts of climate change on tidal marsh seascape structure and function for nekton is a critical step toward fisheries conservation and management. The multiple stressor framework provides a promising approach for advancing integrative, cross-disciplinary research on tidal marshes and food web dynamics. It can be used to quantify climate change effects on and interactions between coastal oceans (e.g., SST, ocean currents, waves) and watersheds (e.g., precipitation, river flows), tidal marsh geomorphology (e.g., vegetation structure, elevation capital, sedimentation), and estuarine and coastal nekton (e.g., species distributions, life history adaptations, predator-prey dynamics). However, disentangling the cumulative impacts of multiple interacting stressors on tidal marshes, whether the effects are additive, synergistic, or antagonistic, and the time scales at which they occur, poses a significant research challenge. This perspective highlights the key physical and ecological processes affecting tidal marshes, with an emphasis on the trophic linkages between marsh production and estuarine and coastal nekton, recommended for consideration in future climate change studies. Such studies are urgently needed to understand climate change effects on tidal marshes now and into the future.


1992 ◽  
Vol 22 (11) ◽  
pp. 1727-1738 ◽  
Author(s):  
Allen M. Solomon ◽  
Patrick J. Bartlein

During the 21st century, global climate change is expected to become a significant force redefining global biospheric boundaries and vegetation dynamics. In the northern hardwood–boreal forest transition forests, it should, at the least, control reproductive success and failure among unmanaged mixed forest stands. One means by which to predict future responses by the mixed forests is to examine the way in which they have responded to climate changes in the past. We used proxy climate data derived from Holocene (past 10 000 years) pollen records in the western Upper Peninsula of Michigan to drive forest gap models, in an effort to define regional prehistoric vegetation dynamics on differing soils. The gap models mimic forest reproduction and growth as a successional process and, hence, are appropriate for defining long-term tree and stand dynamics. The modeled period included a mid-postglacial period that was warmer than today's climate. Model failures, made apparent from the exercise, were corrected and the simulations were repeated until the model behaved credibly. Then, the same gap model was used to simulate potential future vegetation dynamics, driven by projections of a future climate that was controlled by greenhouse gases. This provided us with the same "measure" of vegetation in the past, present, and future, generating a continuously comparable record of change and stability in forest composition and density. The resulting projections of vegetation response to climate change appear to be affected more by the rate than by the magnitude of climate change.


Eos ◽  
2016 ◽  
Author(s):  
Emily Underwood

More accurate reconstruction of ice sheets over the past 150,000 years could help scientists predict future climate change.


Author(s):  
Rob Marchant

The climatology of East Africa results from the complex interaction between major global convergence zones with more localized regional feedbacks to the climate system; these in turn are moderated by a diverse land surface characterized by coastal to land transitions, high mountains, and large lakes. The main climatic character of East Africa, and how this varies across the region, takes the form of seasonal variations in rainfall that can fall as one, two, or three rainy seasons, the times and duration of which will be determined by the interplay between major convergence zones with more localized regional feedbacks. One of the key characteristics of East Africa are climatic variations with altitude as climates change along an altitudinal gradient that can extend from hot, dry, “tropical” conditions to cool, wet, temperate conditions and on the highest mountains “polar” climates with permanent ice caps. With this complex and variable climate landscape of the present, as scientists move through time to explore past climatic variability, it is apparent there have been a series of relatively rapid and high-magnitude environmental shifts throughout East Africa, particularly characterized by changing hydrological budgets. How climate change has impacted on ecosystems, and how those ecosystems have responded and interacted with human populations, can be unearthed by drawing on evidence from the sedimentary and archaeological record of the past six thousand years. As East African economies, and the livelihoods of millions of people in the region, have been clearly heavily affected by climate variability in the past, so it is expected that future climate variability will impact on ecosystem functioning and the preparedness of communities for future climate change.


Sign in / Sign up

Export Citation Format

Share Document