scholarly journals Recent Advances in Engineered Nanoparticles for RNAi-Mediated Crop Protection Against Insect Pests

2021 ◽  
Vol 3 ◽  
Author(s):  
Charlotte E. Pugsley ◽  
R. E. Isaac ◽  
Nicholas J. Warren ◽  
Olivier J. Cayre

Since the discovery of RNA interference (RNAi) in the nematode worm Caenorhabditis elegans in 1998 by Fire and Mello et al., strides have been made in exploiting RNAi for therapeutic applications and more recently for highly selective insect pest control. Although triggering mRNA degradation in insects through RNAi offers significant opportunities in crop protection, the application of environmental naked dsRNA is often ineffective in eliciting a RNAi response that results in pest lethality. There are many possible reasons for the failed or weak induction of RNAi, with predominant causes being the degradation of dsRNA in the formulated pesticide, in the field or in the insect once ingested, poor cuticular and oral uptake of the nucleic acid and sometimes the lack of an innate strong systemic RNAi response. Therefore, in the last 10 years significant research effort has focused on developing methods for the protection and delivery of environmental dsRNA to enable RNAi-induced insect control. This review focuses on the design and synthesis of vectors (vehicles that are capable of carrying and protecting dsRNA) that successfully enhance mRNA degradation via the RNAi machinery. The majority of solutions exploit the ability of charged polymers, both synthetic and natural, to complex with dsRNA, but alternative nanocarriers such as clay nanosheets and liposomal vesicles have also been developed. The various challenges of dsRNA delivery and the obstacles in the development of well-designed nanoparticles that act to protect the nucleic acid are highlighted. In addition, future research directions for improving the efficacy of RNA-mediated crop protection are anticipated with inspiration taken from polymeric architectures constructed for RNA-based therapeutic applications.

2020 ◽  
Vol 113 (5) ◽  
pp. 2061-2068
Author(s):  
Jia-Wei Tay ◽  
Dong-Hwan Choe ◽  
Ashok Mulchandani ◽  
Michael K Rust

Abstract Here, we review the literature on the development and application of hydrogel compounds for insect pest management. Researchers have used hydrogel compounds for the past few decades to achieve the controlled release of various contact insecticides, but in recent years, hydrogel compounds have also been used to absorb and deliver targeted concentrations of toxicants within a liquid bait to manage insect pests. The highly absorbent hydrogel acts as a controlled-release formulation that keeps the liquid bait available and palatable to the target pests. This review discusses the use of various types of hydrogel compounds in pest management based on different environmental settings (e.g., agricultural, urban, and natural areas), pest systems (e.g., different taxa), and modes of insecticide delivery (e.g., spray vs bait). Due to their unique physicochemical properties, hydrogel compounds have great potential to be developed into new and efficacious pest management strategies with minimal environmental impact. We will also discuss the future research and development of hydrogels in this review.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bhabesh Deka ◽  
Azariah Babu ◽  
Chittaranjan Baruah ◽  
Manash Barthakur

Background: Tea is a natural beverage made from the tender leaves of the tea plant (Camellia sinensis Kuntze). Being of a perennial and monoculture nature in terms of its cultivation system, it provides a stable micro-climate for various insect pests, which cause substantial loss of crop. With the escalating cost of insect pest management and increasing concern about the adverse effects of the pesticide residues in manufactured tea, there is an urgent need to explore other avenues for pest management strategies.Aim: Integrated pest management (IPM) in tea invites an multidisciplinary approach owing to the high pest diversity in the perennial tea plantation system. In this review, we have highlighted current developments of nanotechnology for crop protection and the prospects of nanoparticles (NPs) in plant protection, emphasizing the control of different major pests of tea plantations.Methods: A literature search was performed using the ScienceDirect, Web of Science, Pubmed, and Google Scholar search engines with the following terms: nanotechnology, nanopesticides, tea, and insect pest. An article search concentrated on developments after 1988.Results: We have described the impact of various pests in tea production and innovative approaches on the use of various biosynthesized and syntheric nanopesticides against specific insect pest targets. Simultaneously, we have provided support for NP-based technology and their different categories that are currently employed for the management of pests in different agro-ecosystems. Besides the broad categories of active ingredients (AI) of synthetic insecticides, pheromones and natural resource-based molecules have pesticidal activity and can also be used with NPs as a carriers as alternatives to traditional pest control agents. Finally, the merits and demerits of incorporating NP-based nanopesticides are also illustrated.Conclusions: Nanopesticides for plant protection is an emerging research field, and it offers new methods to design active ingredients amid nanoscale dimensions. Nanopesticide-based formulations have a potential and bright future for the development of more effective and safer pesticide/biopesticides.


Author(s):  
Ukoroije, Rosemary Boate ◽  
Otayor, Richard Abalis

Bio-pesticides are biological derived agents that are usually applied in a manner similar to synthetic pesticides but achieve pest management in an environmental friendly way. Bioinsecticides have the advantages of been reportedly eco-friendly both to man and the environment, are target specific, lack problem of residue, least persistent in environment, locally available, easily processed and inexpensive, though with the limitation of requiring repeated applications for the achievement of optimal control of insect pests while enhancing crop protection. The mode of action of bioinsecticides on insects includes repellent action, antifeedant activity, oviposition deterrent properties, growth and development inhibition, toxicity, attractants, sterility and death. Hence, bioinsecticides can be included in integrated pest management programs for crop protection and insect pest control. The review on biopesticidal properties of some plant secondary metabolites in the leaves, stems, bark, fruits, flowers, cloves, rhizomes, grains and seeds of plants and their interference with the growth, feeding, reproduction of insect pestsfor pest management has been elaborated.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Esther L Nampeera ◽  
Gail R Nonnecke ◽  
Sue L Blodgett ◽  
Sharon M Tusiime ◽  
Dorothy M Masinde ◽  
...  

Abstract Amaranth (Amaranthus L.) species are grown for their grain or leaves and contribute to farmers’ livelihoods and nutritional food security. Leafy amaranth (LA) is consumed widely as a vegetable in Kenya. An assessment of current farmers’ knowledge of pest management practices provides information about future educational needs. Six-hundred LA farmers were interviewed, focus group discussions with farmers, and interviews with key informants were completed in four Kenyan counties. The majority (71%) of survey respondents grew LA on less than 0.25 acre (<0.1 ha) and 59.2% were female. Constraints of LA production differed by counties surveyed. Farmers indicated insects and birds were important in Kiambu and Kisumu counties, whereas in Vihiga and Kisii, capital, markets, and land area for production were important. Farmers stated and ranked importance of the insects they observed during LA production. Eighty-seven percent stated aphids (Hemiptera: Aphididae), as a major pest and 96.8% ranked aphids as the number-one insect pest of LA in all four counties. Two other pests of LA included cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae) (0.8%) and spider mites, Tetranychus spp (Trombidiformes; Tetranychidae) (0.7%). Forty-two percent of all LA farmers managed aphids, with 34% using synthetic insecticides and 8% using nonsynthetic methods. Biological controls and host-plant resistance were not mentioned. Educational programs that train farmers about integrated pest management (IPM) in LA production are needed. Future research should determine successful IPM strategies for aphids on LA to reduce insecticide use and improve sustainability and nutritional food security for small-landholder farmers and consumers.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Randa Jabbour ◽  
Shiri Noy

Abstract Although insect pest management in alfalfa (Medicago sativa L. [Fabales: Fabaceae]) hay remains a major challenge in the Western United States, we know comparatively little about the producer priorities and perceptions of alfalfa insect pests. Given the importance of alfalfa to Wyoming agriculture, we sought to better understand producer priorities regarding insect pest management in alfalfa. We developed a survey instrument that was mailed to 3,141 individuals by the National Agricultural Statistics Service (NASS). We received 634 returned surveys, a response rate of 20.7% of all Wyoming alfalfa producers. Respondents were asked to list all insect pests they had encountered in their experience growing alfalfa, and then to select the most problematic from the list they generated. Sixty-six percent of respondents named alfalfa weevil Hypera postica (Gyllenhal; Coleoptera: Curculionidae) as the most problematic insect pest they had encountered. Eighteen percent of respondents named grasshoppers (Orthoptera) as most problematic, and 8% of respondents named aphids (Hemiptera: Aphididae). Producers indicated a variety of agronomic, economic, biological, and weather-related reasons that rendered these insects as problematic pests. For each of the three most problematic pests, insecticide application and early harvest of hay were practiced by the largest number of Wyoming producers according to our survey results. For all three of these pests, insecticides are both used most often and considered most effective by the most respondents. These findings suggest an important opportunity for future research on integrated insect pest management.


2019 ◽  
Vol 110 (1) ◽  
pp. 1-14 ◽  
Author(s):  
M.S. Noman ◽  
L. Liu ◽  
Z. Bai ◽  
Z. Li

AbstractTephritidae is a large family that includes several fruit and vegetable pests. These organisms usually harbor a variegated bacterial community in their digestive systems. Symbiotic associations of bacteria and fruit flies have been well-studied in the generaAnastrepha, Bactrocera, Ceratitis,andRhagoletis.Molecular and culture-based techniques indicate that many genera of the Enterobacteriaceae family, especially the genera ofKlebsiella, Enterobacter, Pectobacterium, Citrobacter, Erwinia,andProvidenciaconstitute the most prevalent populations in the gut of fruit flies. The function of symbiotic bacteria provides a promising strategy for the biological control of insect pests. Gut bacteria can be used for controlling fruit fly through many ways, including attracting as odors, enhancing the success of sterile insect technique, declining the pesticide resistance, mass rearing of parasitoids and so on. New technology and recent research improved our knowledge of the gut bacteria diversity and function, which increased their potential for pest management. In this review, we discussed the diversity of bacteria in the economically important fruit fly and the use of these bacteria for controlling fruit fly populations. All the information is important for strengthening the future research of new strategies developed for insect pest control by the understanding of symbiotic relationships and multitrophic interactions between host plant and insects.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 189
Author(s):  
Ivana Tlak Gajger ◽  
Showket Ahmad Dar

In this review, we describe the role of plant-derived biochemicals that are toxic to insect pests. Biotic stress in plants caused by insect pests is one of the most significant problems, leading to yield losses. Synthetic pesticides still play a significant role in crop protection. However, the environmental side effects and health issues caused by the overuse or inappropriate application of synthetic pesticides forced authorities to ban some problematic ones. Consequently, there is a strong necessity for novel and alternative insect pest control methods. An interesting source of ecological pesticides are biocidal compounds, naturally occurring in plants as allelochemicals (secondary metabolites), helping plants to resist, tolerate or compensate the stress caused by insect pests. The abovementioned bioactive natural products are the first line of defense in plants against insect herbivores. The large group of secondary plant metabolites, including alkaloids, saponins, phenols and terpenes, are the most promising compounds in the management of insect pests. Secondary metabolites offer sustainable pest control, therefore we can conclude that certain plant species provide numerous promising possibilities for discovering novel and ecologically friendly methods for the control of numerous insect pests.


2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


2015 ◽  
Vol 22 (2) ◽  
pp. 149-163 ◽  
Author(s):  
Maria Macedo ◽  
Caio de Oliveira ◽  
Poliene Costa ◽  
Elaine Castelhano ◽  
Marcio Silva-Filho

SAGE Open ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 215824402199065
Author(s):  
Matthew Canham ◽  
Clay Posey ◽  
Delainey Strickland ◽  
Michael Constantino

Organizational cybersecurity efforts depend largely on the employees who reside within organizational walls. These individuals are central to the effectiveness of organizational actions to protect sensitive assets, and research has shown that they can be detrimental (e.g., sabotage and computer abuse) as well as beneficial (e.g., protective motivated behaviors) to their organizations. One major context where employees affect their organizations is phishing via email systems, which is a common attack vector used by external actors to penetrate organizational networks, steal employee credentials, and create other forms of harm. In analyzing the behavior of more than 6,000 employees at a large university in the Southeast United States during 20 mock phishing campaigns over a 19-month period, this research effort makes several contributions. First, employees’ negative behaviors like clicking links and then entering data are evaluated alongside the positive behaviors of reporting the suspected phishing attempts to the proper organizational representatives. The analysis displays evidence of both repeat clicker and repeat reporter phenomena and their frequency and Pareto distributions across the study time frame. Second, we find that employees can be categorized according to one of the four unique clusters with respect to their behavioral responses to phishing attacks—“Gaffes,” “Beacons,” “Spectators,” and “Gushers.” While each of the clusters exhibits some level of phishing failures and reports, significant variation exists among the employee classifications. Our findings are helpful in driving a new and more holistic stream of research in the realm of all forms of employee responses to phishing attacks, and we provide avenues for such future research.


Sign in / Sign up

Export Citation Format

Share Document