scholarly journals Farmers’ Knowledge and Practices in the Management of Insect Pests of Leafy Amaranth in Kenya

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Esther L Nampeera ◽  
Gail R Nonnecke ◽  
Sue L Blodgett ◽  
Sharon M Tusiime ◽  
Dorothy M Masinde ◽  
...  

Abstract Amaranth (Amaranthus L.) species are grown for their grain or leaves and contribute to farmers’ livelihoods and nutritional food security. Leafy amaranth (LA) is consumed widely as a vegetable in Kenya. An assessment of current farmers’ knowledge of pest management practices provides information about future educational needs. Six-hundred LA farmers were interviewed, focus group discussions with farmers, and interviews with key informants were completed in four Kenyan counties. The majority (71%) of survey respondents grew LA on less than 0.25 acre (<0.1 ha) and 59.2% were female. Constraints of LA production differed by counties surveyed. Farmers indicated insects and birds were important in Kiambu and Kisumu counties, whereas in Vihiga and Kisii, capital, markets, and land area for production were important. Farmers stated and ranked importance of the insects they observed during LA production. Eighty-seven percent stated aphids (Hemiptera: Aphididae), as a major pest and 96.8% ranked aphids as the number-one insect pest of LA in all four counties. Two other pests of LA included cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae) (0.8%) and spider mites, Tetranychus spp (Trombidiformes; Tetranychidae) (0.7%). Forty-two percent of all LA farmers managed aphids, with 34% using synthetic insecticides and 8% using nonsynthetic methods. Biological controls and host-plant resistance were not mentioned. Educational programs that train farmers about integrated pest management (IPM) in LA production are needed. Future research should determine successful IPM strategies for aphids on LA to reduce insecticide use and improve sustainability and nutritional food security for small-landholder farmers and consumers.

2020 ◽  
Vol 113 (5) ◽  
pp. 2061-2068
Author(s):  
Jia-Wei Tay ◽  
Dong-Hwan Choe ◽  
Ashok Mulchandani ◽  
Michael K Rust

Abstract Here, we review the literature on the development and application of hydrogel compounds for insect pest management. Researchers have used hydrogel compounds for the past few decades to achieve the controlled release of various contact insecticides, but in recent years, hydrogel compounds have also been used to absorb and deliver targeted concentrations of toxicants within a liquid bait to manage insect pests. The highly absorbent hydrogel acts as a controlled-release formulation that keeps the liquid bait available and palatable to the target pests. This review discusses the use of various types of hydrogel compounds in pest management based on different environmental settings (e.g., agricultural, urban, and natural areas), pest systems (e.g., different taxa), and modes of insecticide delivery (e.g., spray vs bait). Due to their unique physicochemical properties, hydrogel compounds have great potential to be developed into new and efficacious pest management strategies with minimal environmental impact. We will also discuss the future research and development of hydrogels in this review.


2018 ◽  
Vol 11 (1) ◽  
pp. 31 ◽  
Author(s):  
Tarekegn Fite ◽  
Tadele Tefera ◽  
Mulugeta Negeri ◽  
Mulugeta Negeri ◽  
Hirpa Legesse

Survey were undertaken in five zones of Oromiya and Amhara regional states, Ethiopia from February to March 2018 to investigate farmers&rsquo; status, knowledge, major chickpea production constraints and insect pest management practices of chickpea. The survey involved 293 randomly taken farmers, who are interviewed using a semi-structured questionnaire. Chickpea insect pests were considered as the main, among production constraints of chickpea by most of the interviewed farmers in Ethiopia. The majority of the farmers&rsquo; responded that Helicoverpa armigera (H&uuml;bner) (Lepidoptera: Noctuidae) is the most prevalent insect pests of chickpea under field condition and Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) in storage. Development Agents (DAs) were the top pest advisory service providers in the current study. A conventional insecticide (namely; Lambda-cyhalotrin and Dimethoate) for the control of H. armigera was the most commonly used pest management methods. Moreover, Two times insecticide applications per cropping season were the most frequent, deployed by most of the interviewed farmers followed by cultural pest management practices. Use of biological control and resistant chickpea varieties against major insect pests were low to negligible in the current survey study in the area. The majority of the farmers began control decision when H. armigera larval stages were smaller and they did not consider larval number per chickpea plant for the decision. These results will be used to formulate future effective and sustainable integrated pest management (IPM) in chickpea for Ethiopian farmers emphasizing ecologically and economically-based approaches.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Randa Jabbour ◽  
Shiri Noy

Abstract Although insect pest management in alfalfa (Medicago sativa L. [Fabales: Fabaceae]) hay remains a major challenge in the Western United States, we know comparatively little about the producer priorities and perceptions of alfalfa insect pests. Given the importance of alfalfa to Wyoming agriculture, we sought to better understand producer priorities regarding insect pest management in alfalfa. We developed a survey instrument that was mailed to 3,141 individuals by the National Agricultural Statistics Service (NASS). We received 634 returned surveys, a response rate of 20.7% of all Wyoming alfalfa producers. Respondents were asked to list all insect pests they had encountered in their experience growing alfalfa, and then to select the most problematic from the list they generated. Sixty-six percent of respondents named alfalfa weevil Hypera postica (Gyllenhal; Coleoptera: Curculionidae) as the most problematic insect pest they had encountered. Eighteen percent of respondents named grasshoppers (Orthoptera) as most problematic, and 8% of respondents named aphids (Hemiptera: Aphididae). Producers indicated a variety of agronomic, economic, biological, and weather-related reasons that rendered these insects as problematic pests. For each of the three most problematic pests, insecticide application and early harvest of hay were practiced by the largest number of Wyoming producers according to our survey results. For all three of these pests, insecticides are both used most often and considered most effective by the most respondents. These findings suggest an important opportunity for future research on integrated insect pest management.


2019 ◽  
Vol 110 (1) ◽  
pp. 1-14 ◽  
Author(s):  
M.S. Noman ◽  
L. Liu ◽  
Z. Bai ◽  
Z. Li

AbstractTephritidae is a large family that includes several fruit and vegetable pests. These organisms usually harbor a variegated bacterial community in their digestive systems. Symbiotic associations of bacteria and fruit flies have been well-studied in the generaAnastrepha, Bactrocera, Ceratitis,andRhagoletis.Molecular and culture-based techniques indicate that many genera of the Enterobacteriaceae family, especially the genera ofKlebsiella, Enterobacter, Pectobacterium, Citrobacter, Erwinia,andProvidenciaconstitute the most prevalent populations in the gut of fruit flies. The function of symbiotic bacteria provides a promising strategy for the biological control of insect pests. Gut bacteria can be used for controlling fruit fly through many ways, including attracting as odors, enhancing the success of sterile insect technique, declining the pesticide resistance, mass rearing of parasitoids and so on. New technology and recent research improved our knowledge of the gut bacteria diversity and function, which increased their potential for pest management. In this review, we discussed the diversity of bacteria in the economically important fruit fly and the use of these bacteria for controlling fruit fly populations. All the information is important for strengthening the future research of new strategies developed for insect pest control by the understanding of symbiotic relationships and multitrophic interactions between host plant and insects.


2019 ◽  
Vol 11 (15) ◽  
pp. 4076 ◽  
Author(s):  
Hudson C. Laizer ◽  
Musa N. Chacha ◽  
Patrick A. Ndakidemi

Weeds and insect pests are among the serious constraints in common bean production in most rural communities. A survey of 169 smallholder farmers was conducted in two common bean-growing districts in northern Tanzania. The aim was to assess farmers’ knowledge, perceptions, current management practices and challenges in order to develop sustainable weed and insect pest management strategies. The results revealed that 83% of farmers perceived insect pests as the major constraint in common bean production, while 73% reported weeds as the main drawback. Insect pest management was mainly achieved through the use of synthetic pesticides, however, only 24% of farmers were able to apply, the rest could not afford due to high cost, limited access and lack of knowledge. Only 6.5% of farmers were aware of non-chemical methods and 2.1% did not practice any method in managing insect pests, both in the field and during storage. Moreover, farmers generally relied on experience in managing insect pests and weeds, and about 43% did not see the need to consult extension officers. These findings indicate that there is a need to sensitize and train farmers on the sustainable methods for pest and weed management in common bean farming systems in northern Tanzania.


2021 ◽  
Author(s):  
Ravi Mohan Srivastava ◽  
Sneha Joshih

The vegetables belonging to family cucurbitaceae are known as cucurbits. These vegetables are attacked by various insect pests right from seeding to harvest. A lot of money, time, and natural resources are invested to cultivate these vegetables. Sustainable pest management practices can save this investment by avoiding losses. Successful cultivation of cucurbits especially cucumber requires an effective and economical control of insect pests. Commercial vegetable growers must produce quality vegetables that are attractive and safe to the consumer at a minimum cost. Insect pest infestations in cucurbits cause heavy economic losses to farmers through reduction in yield, increased cost of production and lowered quality of produce. Effective and economic and sustainable pest management requires the use of cultural, mechanical, biological, and chemical methods. The integration of these different methods is necessary for achieving good management of pests. In case of cucurbits especially for cucumber pest management can be achieved only by a long-term assurance to integrated pest management practices (IPM). IPM involves the strategic use of resistant varieties, monitoring of pest incidence, cultural methods, mechanical removal of pest, biological control, and need based use of selective pesticides. Integrated pest management (IPM) is the alternative to insecticide and facilitates sustainable environment management.


2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 128 ◽  
Author(s):  
Shovon Chandra Sarkar ◽  
Endong Wang ◽  
Shengyong Wu ◽  
Zhongren Lei

Companion planting is a well-known strategy to manage insect pests and support a natural enemy population through vegetative diversification. Trap cropping is one such type of special companion planting strategy that is traditionally used for insect pest management through vegetative diversification used to attract insect pests away from the main crops during a critical time period by providing them an alternative preferred choice. Trap crops not only attract the insects for feeding and oviposition, but also act as a sink for any pathogen that may be a vector. Considerable research has been conducted on different trap crops as companion plant species to develop improved pest management strategies. Despite this, little consensus exists regarding optimal trap cropping systems for diverse pest management situations. An advantage of trap cropping over an artificially released natural enemy-based biological control could be an attractive remedy for natural enemies in cropping systems. Besides, many trap crop species can conserve natural enemies. This secondary effect of attracting natural enemies may be an advantage compared to the conventional means of pest control. However, this additional consideration requires a more knowledge-intensive background to designing an effective trap cropping system. We have provided information based on different trap crops as companion plant, their functions and an updated list of trap cropping applications to attract insect pests and natural enemies that should be proven as helpful in future trap cropping endeavors.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Jonathan L. Larson ◽  
Adam Dale ◽  
David Held ◽  
Benjamin McGraw ◽  
Douglas S. Richmond ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Charlotte E. Pugsley ◽  
R. E. Isaac ◽  
Nicholas J. Warren ◽  
Olivier J. Cayre

Since the discovery of RNA interference (RNAi) in the nematode worm Caenorhabditis elegans in 1998 by Fire and Mello et al., strides have been made in exploiting RNAi for therapeutic applications and more recently for highly selective insect pest control. Although triggering mRNA degradation in insects through RNAi offers significant opportunities in crop protection, the application of environmental naked dsRNA is often ineffective in eliciting a RNAi response that results in pest lethality. There are many possible reasons for the failed or weak induction of RNAi, with predominant causes being the degradation of dsRNA in the formulated pesticide, in the field or in the insect once ingested, poor cuticular and oral uptake of the nucleic acid and sometimes the lack of an innate strong systemic RNAi response. Therefore, in the last 10 years significant research effort has focused on developing methods for the protection and delivery of environmental dsRNA to enable RNAi-induced insect control. This review focuses on the design and synthesis of vectors (vehicles that are capable of carrying and protecting dsRNA) that successfully enhance mRNA degradation via the RNAi machinery. The majority of solutions exploit the ability of charged polymers, both synthetic and natural, to complex with dsRNA, but alternative nanocarriers such as clay nanosheets and liposomal vesicles have also been developed. The various challenges of dsRNA delivery and the obstacles in the development of well-designed nanoparticles that act to protect the nucleic acid are highlighted. In addition, future research directions for improving the efficacy of RNA-mediated crop protection are anticipated with inspiration taken from polymeric architectures constructed for RNA-based therapeutic applications.


Sign in / Sign up

Export Citation Format

Share Document