scholarly journals Genotype × Environment Interaction and Stability Analysis for Root Yield in Sweet Potato [Ipomoea batatas (L.) Lam]

2021 ◽  
Vol 3 ◽  
Author(s):  
Emmanuel C. Ebem ◽  
Solomon O. Afuape ◽  
Samuel C. Chukwu ◽  
Benjamin E. Ubi

Sweet potato breeding in Africa, more especially in Nigeria, has mainly focused on improving productivity on farmers' fields and on fresh root consumption. In order to target the breeding program, the study was conducted to estimate the magnitude of genotype × environment interaction (G × E) and to select stable and high yielding sweet potato genotypes for fresh root yield and root Cylas severity in two locations, and to identify the most discriminating and representative test environments in Nigeria. The 41 genotypes were evaluated across two diverse environments using a randomized complete block design (RCBD) with three replications. Data were collected on total number of roots per plant, number and weight of marketable roots per plant, fresh root yield, and root Cylas severity. The data were subjected to analysis of variance using the Generalized Linear Model procedure of SAS 9.2 where genotype was treated as a fixed factor and replication treated as a random variable. Stability analysis was conducted using Genotype and Genotype x Environment Interaction (GGE) bi-plot. Environment, genotype, and G × E interaction variances were highly significant (p < 0.01) among the assessed agronomic traits. Moreover, the analysis of variance revealed highly significant (p < 0.01) differences among genotypes, environments, and G × E interaction effects for all the studied traits. The GGE biplot analyses identified three promising genotypes—G13, G11, and G14—that possess both high mean root yield and high stability, closest to the ideal genotype for root performance and consistency of performance across environments. This study provides valuable information that could be utilized in a breeding program to ameliorate local clones of sweet potato in Nigeria.

1969 ◽  
Vol 91 (3-4) ◽  
pp. 117-131
Author(s):  
Fernando Casanoves ◽  
Raúl Macchiavelli ◽  
Mónica Balzarini

Multi-Environment Trials (METs) are used to make recommendations about genotypes at many stages of plant breeding programs. Because of the genotype-environment interaction, METs are usually conducted in various environments (locations and/or years), using designs which involve several repetitions (plots) for each genotype at each environment. The stratification or blocking of plots within each environment enables one to consider part of the variability due to differences between plots. The objective of this study was to see how frequently the problem of heterogeneous variances across environments appears in Peanut Breeding Program METs, and to evaluate the effects of diverse spatial modeling strategies on the comparison of genotype means in each environment. A series of 18 METs in a peanut breeding program with randomized complete block design in each environment were simultaneously adjusted by using 1) classic analysis of variance models (fixed and random block effects); 2) mixed models adjusted with homogenous and heterogeneous residual variances to take into account that experiments conducted in different environments may vary in precision (residual variances). The results suggest that the analysis of variance models with a block design and heteroscedastic errors between locations are more appropriate than their homogeneous residual variance versions.


2016 ◽  
Vol 155 (6) ◽  
pp. 919-929 ◽  
Author(s):  
M. I. ANDRADE ◽  
J. RICARDO ◽  
A. NAICO ◽  
A. ALVARO ◽  
G. S. MAKUNDE ◽  
...  

SUMMARYSweetpotato breeding requires at least 5 years to obtain an advanced breeding clone for further testing with the goal of cultivar release. An accelerated breeding scheme (ABS) can be feasible if the genotype × year interaction is low. The objectives of the present study were to describe an ABS for sweetpotato and to investigate the efficiency of this breeding scheme for selecting high-yielding and well-adapted orange-fleshed sweetpotato (OFSP) cultivars with high β-carotene (BC) content. More than 198 500 seeds from two crossing blocks were germinated and rapidly multiplied for evaluation in observation trials at four breeding locations in Mozambique. Breeding clones with storage root yields above 10 t/ha were advanced to preliminary and advanced yield trials across four sites and for 3 years. As a result, 64 high-yielding OFSP breeding clones were selected and evaluated in four mega-environments following a randomized complete block design with three replicates at Angónia, Chókwè, Gurúè and Umbelúzi. Data from multi-environment trials were subjected to single site and combined analysis of variance as well as to stability analysis. The genotype × environment interaction was highly significant for storage root and vine yields, dry matter (DM) and BC content. Storage root yield and DM content for 15 OFSP breeding clones ranged from 14·9 to 27·1 t/ha and from 24·8 to 32·8%, respectively. BC content, iron and zinc ranged from 5·9 to 38·4, 1·6 to 2·1 and 1·1 to 1·5 mg/100 g dry weight, respectively. The OFSP breeding clones also met the culinary tastes required by local consumers in Mozambique. The proposed ABS seems to be an attractive scheme for genetic enhancement of sweetpotato.


2019 ◽  
Vol 35 (6) ◽  
Author(s):  
Daiane da Silva Nóbrega ◽  
José Ricardo Peixoto ◽  
Michelle Souza Vilela ◽  
Anne Kelly da Silva Nóbrega ◽  
Elaine Caetano Santos ◽  
...  

Sweet potato (Ipomoea batatas) is a rustic horticultural crop with high production potential. However, the crop is susceptible to many pests and diseases. The objective of this study was to evaluate 10 genotypes of sweet potato regarding their yield and resistance to soil insects, under Brazilian cerrado soil conditions. Genotypes were selected from the Sweet Potato Germplasm Bank of Embrapa Hortaliças. The experiment was conducted at Água Limpa Farm, belonging to University of Brasilia (UnB), and consisted of a randomized block design, with 10 treatments (genotypes), 10 plants per plot, and four replications. The following traits were analyzed: number of perforations per root, incidence of roots injured by insects, plant resistance degree, root shape, total and marketable root yields, root peel color, root pulp color, pulp total soluble solids, pulp titratable acidity, pulp TSS/TA ratio, pulp moisture, and pulp starch yield. Genotype CNPH 53 (26.78 t ha-1) presented total root yield greater than the commercial variety Brazlândia Rosada (17.54 t ha-1). Genotype Santa Sofia (11.77 t ha-1) and Brazlândia (13.5 t ha-1) had similar marketable root yields. CNPH 53 showed the best agronomic performance, exhibiting moderate susceptibility to soil insects and root shape meeting the market standards. It also had low pulp TA (2.53%); high pulp TSS (12.25 °Brix) and pulp TSS/AT ratio (4.24); pulp moisture content close to 70%; and the highest pulp starch content (11.98%). The traits number of perforations per root, root shape, and pulp TA presented heritability values close to 70%. Marketable root yield, pulp moisture, and pulp starch content demonstrated heritability values greater than 90% and CVG/CVE greater than 1.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Norbert G. Maroya ◽  
Peter Kulakow ◽  
Alfred G. O. Dixon ◽  
Busie B. Maziya-Dixon

Twenty-one yellow-fleshed cassava genotypes were evaluated over two years in five major cassava growing agroecological zones in Nigeria. The trials were established in a randomized complete block design with four replications to assess genotype performance and Genotype × Environment interaction for cassava mosaic disease (CMD), fresh and dry root yield (FYLD; DYLD), root dry matter content (DMC), and total carotene concentration (TCC). Combined analysis of variance showed significant differences (P<0.001) among genotypes (G), environment (E), and Genotype × Environment interaction (GE) for all the traits tested. For reaction to CMD, the best genotypes showing stable resistance were TMS 07/0539 and TMS 07/0628. For root yield, the best genotypes were TMS 01/1368 and TMS 07/0553. Genotype TMS 07/0593 was the best for DMC and TCC across the 10 environments. Variation among genotypes accounted for most of the Total Sum of Squares for CMD (72.1%) and TCC (34.4%). Environmental variation accounted for most of the Total Sum of Squares for FYLD (42.8%), DYLD (39.6%), and DMC (29.2%). This study revealed that TMS 07/0593 has the highest and most stable TCC, DMC with the lowest CMD severity score and appeared to be the best genotype.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1078a-1078
Author(s):  
E. Niyonsaba ◽  
E. G. Rhoden ◽  
P. K. Biswas ◽  
G.W. Carver

A study was conducted to assess the effects of gypsum on the early growth and storage root yield of sweet potato (Ipomoea batatas) cvs `Jewel', `Goergia Jet' and `TI-155'. Three rates of gypsum were applied (1.03, 2.06 and 3.09 tons/acre). These represented half, recommended and 1.5 recommended levels. The experiment was a randomized complete block design with a split plot arrangement of treatment. Leaf area, total dry matter, leaf dry matter and stat-age root weight were recorded at 30-day intervals. Plants receiving half the recommended levels of gypsum produced the highest total storage root dry matter (0.306 t/a) and the highest leaf dry matter (0.116 t/a). Although a positive relationship exists between leaf dry matter and storage root yield between 90 and 120 days, there was no such relationship between those parameters either at 30 and 60 days or 60 and 90 days after transplanting.


2021 ◽  
Vol 13 (7) ◽  
pp. 3730
Author(s):  
Abdullah Al Mahmud ◽  
Mohamed M. Hassan ◽  
Md Jahangir Alam ◽  
Md Samim Hossain Molla ◽  
Md Akkas Ali ◽  
...  

The study aimed to select high-yielding, farmers-preferred quality sweet potato varieties that are suitable to grow in various environmental conditions in Bangladesh. In this context, four popular sweet potato varieties (viz., ‘BARI Mistialu-8′, ‘BARI Mistialu-12′, ‘BARI Mistialu-14′, and ‘BARI Mistialu-15′) were used in the study. These varieties were released by Bangladesh Agricultural Research Institute (BARI). In the first season (2018–2019), these varieties were evaluated at nine locations, and in the second season (2019–2020), the same varieties were tested further, but only in three locations. The trial was set up in a randomized complete block design and repeated three times. After two years of observation, it was found that the fresh root yield was varied significantly due to the environment (E), genotypes (G), and their (G × E) interaction (p ≤ 0.01) by using genotype and genotype x environment (GGE) biplot analysis. The E and G × E interaction effects were found to the greater than the genotypes effect solely. In the first year, three varieties, namely ‘BARI Mistialu-8′, ‘BARI Mistialu-12′ and ‘BARI Mistialu-14′, were identified as balanced and comparatively higher in yield in nine locations. These three varieties also showed a similar trend with respect to root yield in tested three locations in the second year. Among the four varieties, ‘BARI Mistialu-12′ was found to be the highest root yielder, followed by ‘BARI Mistialu-8′ and ‘BARI Mistialu-14′. Across the locations, these varieties showed 57.89%, 61.50% and 44.30% higher yield than the local check cultivar. Therefore, these three varieties may be recommended as the best varieties of sweet potato throughout the country.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2136
Author(s):  
Mohammad Rafiqul Islam ◽  
Bikas Chandra Sarker ◽  
Mohammad Ashraful Alam ◽  
Talha Javed ◽  
Mohammad Jahangir Alam ◽  
...  

Water deficit stress is a critical abiotic constraint to mung bean production that affects plant growth and development and finally reduces crop yield. Therefore, a field experiment was conducted at five diverse environments using four water stress-tolerant genotypes, namely BARI Mung-8, BMX-08010-2, BMX-010015, and BMX-08009-7, along with two popular cultivated varieties (check) of BARI Mung-6 and BARI Mung-7 to evaluate more stable tolerant genotypes across the country. Stability analysis was performed based on the grain yield. The combined analysis of variance showed significant variations among genotypes, environments, and their interactions. The AMMI analysis of variance indicated that genotype accounted for 91% of the total sum of squares for grain yield, followed by genotype × environment interaction (5%), and environment (4%). Partitioning of interaction indicated that the first three interaction principal components (IPCA1–IPCA3) were highly significant (p ≤ 0.01). Using these significant IPCAs, AMMI stability parameters and non-parameter indices BMX-010015 was found stable across the environment based on yield traits and grain yield. The BMX-08010-2 genotype also showed significant regression coefficient (bi) more than unity, and non-significant deviation from regression (S2di) values, indicating suitable for a favorable environment considering grain yield. So, based on the stability analysis (Eberhart and Russell), additive main effects, and multiplicative interactions (AMMI) analysis, the BMX-010015 and BMX-08010-2 could be suitable for having tolerance to water deficit stress.


2014 ◽  
Vol 1 (2) ◽  
pp. 74-78
Author(s):  
Birhanu Amare ◽  
Fetien Abay ◽  
Yemane Tsehaye

Seven sweet potato varieties (Bellela, Kabode, Kulfo, LO, Temesgen, Tulla and Vitae) were tested in southern and eastern zones of Tigra, Ethiopiay in 2012 to evaluate their total root yield potential.  Randomized complete block design with three replications was used for the experiment Yield data was analyzed using combined ordinary analysis of variance and the additive main effect and multiplication interaction effect model (AMMI). The combined analysis of variance across locations showed significant variation among genotypes, locations and the genotypes by locations interaction for the total storage root yield (t/ha). Based on this, the superior mean total root yield (26.82 t/ha) was obtained at Kukufto testing location while the inferior (13.45 t/ha) was at Rarhe. Similarly, among the genotypes, LO gave the highest mean total root yield (30.9 t/ha), while bellela gave the lowest (7.78 t/ha). The AMMI analysis for the total storage root yield also showed highly significant difference for genotypes, locations and the genotypes by locations interaction components The contribution of genotype, location and genotype by location interaction to the total variation in root yield was about 54.1%, 21.4% and 19.4%, respectively. The genotype main effect contributed more to the total variability indicating that the variation was largely due to the inheritance of genotype effect. The genotype by location interaction was further partitioned using AMMI model and the first two principal components explained 100% of the total variability. The model captured 83.4 % of the interaction sum of squares with the first Interaction Principle Component Axis (IPCA) (in 58.3% of the interaction degrees of freedom) and 16.6% by the second IPCA axis (with 41.7% of the G x E d.f). AMMI biplot view of this study identified kukufto as best testing location and LO, Tulla and Kulfo as best genotypes for south and south east zones of Tigray region.  


Author(s):  
B. Arunkumar ◽  
E. Gangapp ◽  
S. Ramesh ◽  
D. L. Savithramma ◽  
N. Nagaraju ◽  
...  

A genotype is considered to be most adaptive / stable, when it registers high mean yield but show a minimum interaction with the environment. Knowledge of genotype × environment interaction and yield stability are important parameters in breeding new cultivars with improved adaptation to environmental constraints prevailing in the target environments. Therefore, an effort was made to know the genotype - environment interaction and to identify stable single cross hybrids across the environments. Eight newly synthesized single cross maize hybrids and 7 checks were evaluated in a Randomized Block Design with three replications during Rabi-2016 across three locations spread over different agro-climatic zones of Karnataka state, India. Different stability parameters as suggested by Eberhart and Russell [1] were estimated. Joint analysis of variance revealed significant differences among environments, hybrids and environments × hybrids interactions advocating the adequacy of stability analysis. Hybrids, viz., MAI 349×MAI 283, KDMI 16×BGUDI 118 were stable for days to anthesis and silking, respectively. Whereas, hybrids viz., KDMI 16×BGUDI 118, BGUDI 120×VL 109252 and MAI 283× KDMI 16 registered mean values lower than the overall mean with bi value nearer to unity and non significant S2di for anthesis silking interval. Hybrid, MAI 349×MAI 283 for plant height and cob length, KDMI 16×MAI 283 for cob length, number of kernel rows-1 and 100 grain weight, BGUDI 88×MAI 349 for cob diameter, MAI 394×BGUDI 88  for shelling % and KDMI 16×BGUDI 118 for grain yield plant-1 registered stable performance across the environments. Based on the positive and negative environmental indices, production environment at location 1 (K Block UAS, GKVK, Bengaluru), was most favorable for expression of majority of characters studied. Hybrid KDMI 16×MAI 283 was found stable across the environments for most of the characters studied.


Sign in / Sign up

Export Citation Format

Share Document