scholarly journals An Artificial Intelligent Signal Amplification System for in vivo Detection of miRNA

Author(s):  
Xibo Ma ◽  
Lei Chen ◽  
Yingcheng Yang ◽  
Weiqi Zhang ◽  
Peixia Wang ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3206
Author(s):  
Dandan Peng ◽  
Dingqiang Lu ◽  
Guangchang Pang

Neonatal γ-immunoglobulin (IgG) Fc receptor (FcγRn) is a receptor that transports IgG across the intestinal mucosa, placenta, and mammary gland, ensuring the balance of IgG and albumin in the body. These functions of FcγRn depend on the intracellular signal transduction and activation caused by the combination of its extracellular domain and IgG Fc domain. Nevertheless, there are still no kinetic studies on this interaction. Consequently, in the present study, we successfully constructed the human FcγRn (hFcγRn) electrochemical receptor sensor. The signal amplification system formed by chitosan nanogold-hFcγRn protein and horseradish peroxidase was used to simulate the cell signal amplification system in vivo, and the kinetic effects between seven IgG and hFcγRn receptors from different species were quantitatively measured. The results showed that the interaction of these seven IgGs with hFcγRn was similar to the catalytic kinetics of enzyme and substrate, and there was a ligand-receptor saturation effect. The order of the interconnect allosteric constants (Ka), which is similar to the Michaelis constant (Km), was human IgG < bovine IgG < horse IgG < rabbit IgG < sheep IgG < donkey IgG < quail IgY. The results showed that hFcγRn had the strongest ability to transport human IgG, which was consistent with the evolution of the system. Therefore, our hFcγRn electrochemical receptor sensor can be used to measure and evaluate the interconnected allosteric network. It is also an essential parameter of the interaction between hFcγRn and different IgGs and, thus, provides a new detection and evaluation method for immunoemulsion, therapeutic monoclonal antibody therapy, heteroantibody treatment, and half-life research.


2002 ◽  
Vol 1 (1) ◽  
pp. 153535002002000 ◽  
Author(s):  
Alexei Bogdanov ◽  
Lars Matuszewski ◽  
Christoph Bremer ◽  
Alexander Petrovsky ◽  
Ralph Weissleder

Magnetic resonance imaging (MRI) has evolved into a sophisticated, noninvasive imaging modality capable of high-resolution anatomical and functional characterization of transgenic animals. To expand the capabilities MRI, we have developed a novel MR signal amplification (MRamp) strategy based on enzyme-mediated polymerization of paramagnetic substrates into oligomers of higher magnetic relaxivity. The substrates consist of chelated gadolinium covalently bound to phenols, which then serve as electron donors during enzymatic hydrogen peroxide reduction by peroxidase. The converted monomers undergo rapid condensation into paramagnetic oligomers leading to a threefold increase in atomic relaxivity ( R1/Gd). The observed relaxivity changes are largely due to an increase in the rotational correlation time τr of the lanthanide. Three applications of the developed system are demonstrated: (1) imaging of nanomolar amounts of an oxidoreductase (peroxidase); (2) detection of a model ligand using an enzyme-linked immunoadsorbent assay format; and (3) imaging of E-selectin on the surface of endothelial cells probed for with an anti-E-selectin – peroxidase conjugate. The development of “enzyme sensing” probes is expected to have utility for a number of applications including in vivo detection of specific molecular targets. One particular advantage of the MRamp technique is that the same paramagnetic substrate can be potentially used to identify different molecular targets by attaching enzymes to various antibodies or other target-seeking molecules.


2010 ◽  
Vol 404 (2) ◽  
pp. 140-148 ◽  
Author(s):  
Leigh Murphy ◽  
Martin J. Baumann ◽  
Kim Borch ◽  
Matt Sweeney ◽  
Peter Westh

Sign in / Sign up

Export Citation Format

Share Document