scholarly journals Lateral Gradient Ambidextrous Optical Reflection in Self-Organized Left-Handed Chiral Nematic Cellulose Nanocrystals Films

Author(s):  
Jiawei Tao ◽  
Jiaqi Li ◽  
Xiao Yu ◽  
Lihong Wei ◽  
Yan Xu

Artificial photonic materials displaying ordered reflected color patterns are desirable in the field of photonic technologies, however, it is challenging to realize. Here we present that self-assembly of cellulose nanocrystals (CNC) in a tilted cuvette leads to the formation of rainbow color CNC films. We show that the self-organized CNC films enable simultaneous reflection of left-handed circularly polarized (LCP) and right-handed circularly polarized (RCP) light with lateral gradient transmittance ratio (LCP/RCP: 8.7–0.9) and the maximum reflectance value up to ca. 72%. This unique ambidextrous optical reflection arises from left-handed chiral photonic architectures with lateral gradient photonic bandgaps and nematic-like defects at the film-substrate interface and between left-handed photonic bandgap layers acting as a half-wavelength retarder. We demonstrate that the tilted angle self-assembly method provides a feasible step toward color patterning of CNC-based photonic films capable of ambidextrous optical reflection.

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3098
Author(s):  
Boyu Zhang ◽  
Sixiang Zhao ◽  
Yingying Yu ◽  
Ming Li ◽  
Liancheng Zhao ◽  
...  

Circularly polarized light (CPL) detection and polarization state recognition are required for a wide range of applications. Conventional polarization detection with optical components causes difficulties for miniaturization and integration. An effective design strategy is proposed for direct CPL detection with chiral material. Here, we realized direct CPL detection based on the combination of chiral photonic cellulose nanocrystal (CNC) and ultraviolet-sensitive ZnO photoconductive material. The CNC layer deposited by evaporation-induced self-assembly established the left-handed chiral nematic structure with a photonic bandgap (PBG) to recognize left-handed CPL (LCPL) and right-handed CPL (RCPL) at specific wavelengths. The PBG of CNC layer has been modulated by the adjustment of chiral nematic pitch to match the semiconductor bandgap of ZnO film in ultraviolet region. The photocurrents under RCPL and LCPL are 2.23 × 10−6 A and 1.77 × 10−6 A respectively and the anisotropy factor Δgpc of 0.23 is acquired for the CPL detection based on the chiral photonic CNC. This design provides a new approach to the detection of CPL polarization state with competitive performance.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
C.F. Castro-Guerrero ◽  
A.B. Morales-Cepeda ◽  
M.R. Díaz-Guillén ◽  
F. Delgado-Arroyo ◽  
F.A. López-González

Abstract Cellulose nanocrystals were extracted from cotton. The cellulose nanocrystals made a self-assembly structure when dried under slow conditions, as it was revealed by the characterization made to the material. The AFM images of the nanocrystals showed that they had a changing local orientation, pointing in a preferred direction that underwent a periodic change. This periodic change resembles the orientation of a chiral nematic phase. The TEM images showed that the nanocrystals had a rod-like appearance with average length size of 98.5 nm and a diameter of 4.7 nm. The TEM characterization showed the nanocrystals with more details than AFM. In this paper, the self-assembling of CNC was observed by AFM, and further investigations were done by TEM, deconvoluting the process of CNC nanorods aggregation.


2019 ◽  
Vol 4 (1) ◽  
pp. 29-48 ◽  
Author(s):  
Michael Giese ◽  
Matthias Spengler

This review summarizes the recent achievements in the development of photonic functional materials based on cellulose nanocrystals (CNCs) and CNC templating. The unique self-assembly of CNCs into chiral nematic structures introduces photonic properties for the development of functional materials with application potential in photonic sensing, tunable reflectors or optoelectronics.


2020 ◽  
Vol 56 (56) ◽  
pp. 7706-7709 ◽  
Author(s):  
Jingqi Chen ◽  
Xiaowei Liu ◽  
Zhiguang Suo ◽  
Chenqi Gao ◽  
Feifei Xing ◽  
...  

Right- and left-handed helical G-quartet nanostructures are synthesized for the first time simultaneously via 5′-guanosine monophosphate (GMP) self-assembly, and further applied as circularly polarized luminescence (CPL) templates.


2020 ◽  
Vol 8 (3) ◽  
pp. 1048-1053 ◽  
Author(s):  
Yue Shi ◽  
Ziming Zhou ◽  
Xiaofei Miao ◽  
Yan Jun Liu ◽  
Quli Fan ◽  
...  

We demonstrate a significant right-handed circularly polarized luminescence of CdSe/CdS quantum rods by doping them into a self-assembled left-handed helical structure of cellulose nanocrystals.


RSC Advances ◽  
2019 ◽  
Vol 9 (18) ◽  
pp. 10360-10363 ◽  
Author(s):  
Kenan Shao ◽  
Ziyu Lv ◽  
Yuting Xiong ◽  
Guodong Li ◽  
Dongdong Wang ◽  
...  

An unconventional supramolecular self-assembly triggered by left-handed circularly polarized light breaks the traditional knowledge of azobenzene photoisomerization.


Soft Matter ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Jun Yoshida ◽  
Shuhei Tamura ◽  
Hidetaka Yuge ◽  
Go Watanabe

A liquid crystal host–guest system composed of achiral organic molecules (host) and colored chiral metal complexes (guest) was fabricated to sense both right- and left-handed circularly polarized light (r- and l-CPL), depending on the guest (dopant) concentration.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 173
Author(s):  
Marina Kurbasic ◽  
Ana M. Garcia ◽  
Simone Viada ◽  
Silvia Marchesan

Bioactive hydrogels based on the self-assembly of tripeptides have attracted great interest in recent years. In particular, the search is active for sequences that are able to mimic enzymes when they are self-organized in a nanostructured hydrogel, so as to provide a smart catalytic (bio)material whose activity can be switched on/off with assembly/disassembly. Within the diverse enzymes that have been targeted for mimicry, hydrolases find wide application in biomaterials, ranging from their use to convert prodrugs into active compounds to their ability to work in reverse and catalyze a plethora of reactions. We recently reported the minimalistic l-His–d-Phe–d-Phe for its ability to self-organize into thermoreversible and biocatalytic hydrogels for esterase mimicry. In this work, we analyze the effects of terminus modifications that mimic the inclusion of the tripeptide in a longer sequence. Therefore, three analogues, i.e., N-acetylated, C-amidated, or both, were synthesized, purified, characterized by several techniques, and probed for self-assembly, hydrogelation, and esterase-like biocatalysis. This work provides useful insights into how chemical modifications at the termini affect self-assembly into biocatalytic hydrogels, and these data may become useful for the future design of supramolecular catalysts for enhanced performance.


Sign in / Sign up

Export Citation Format

Share Document