scholarly journals Facile Assembly of Thermosensitive Liposomes for Active Targeting Imaging and Synergetic Chemo-/Magnetic Hyperthermia Therapy

Author(s):  
Yanli An ◽  
Rui Yang ◽  
Xihui Wang ◽  
Yong Han ◽  
Gang Jia ◽  
...  

Cancer stem cells (CSCs) are thought to be responsible for the recurrence of liver cancer, highlighting the urgent need for the development of effective treatment regimens. In this study, 17-allylamino-17-demethoxygeldanamycin (17-AAG) and thermosensitive magnetoliposomes (TMs) conjugated to anti-CD90 (CD90@17-AAG/TMs) were developed for temperature-responsive CD90-targeted synergetic chemo-/magnetic hyperthermia therapy and simultaneous imaging in vivo. The targeting ability of CD90@DiR/TMs was studied with near-infrared (NIR) resonance imaging and magnetic resonance imaging (MRI), and the antitumor effect of CD90@17-AAG/TM-mediated magnetic thermotherapy was evaluated in vivo. After treatment, the tumors were analyzed with Western blotting, hematoxylin and eosin staining, and immunohistochemical (IHC) staining. The relative intensity of fluorescence was approximately twofold higher in the targeted group than in the non-targeted group, while the T2 relaxation time was significantly lower in the targeted group than in the non-targeted group. The combined treatment of chemotherapy, thermotherapy, and targeting therapy exhibited the most significant antitumor effect as compared to any of the treatments alone. The anti-CD90 monoclonal antibody (mAb)-targeted delivery system, CD90@17-AAG/TMs, exhibited powerful targeting and antitumor efficacies against CD90+ liver cancer stem cells in vivo.

2019 ◽  
Vol 15 (12) ◽  
pp. 2291-2304
Author(s):  
Liqun Huang ◽  
Mengwei Chen ◽  
Chang Xu ◽  
Qishuai Feng ◽  
Jiaojiao Wu ◽  
...  

The targeted delivery of nanomedicines into solid tumors remains challenging in cancer treatment. Stem cells with tumortropic migration ability are promising as biocarriers to transport nanomedicines. The transportation of nanomedicines into cancer cells is the key step for tumor targeted delivery via stem cells. In this study, we designed a magnetic nanocube (scMNP) loaded in mesenchymal stem cells for magnetic hyperthermia of prostate cancer, and the delivery and transportation pathways into the cancer cells were fully investigated. The MSCs acted as the carrier of the loaded scMNPs along with the upregulation of CXCR4 for the migration to cancer cells. The therapeutic effect was mainly due to scMNPs via magnetic hyperthermia. Stem cell-derived microvesicles containing scMNPs played an essential role in the crosstalk between stem cells and cancer cells for targeted delivery. Both in vitro and in vivo studies demonstrated that the system showed satisfactory therapeutic efficiency under magnetic hyperthermia therapy. Our investigation presents a comprehensive study of magnetic nanoparticles in combination with MSCs and their extracellular microvesicles and is promising as an effective strategy for magnetic hyperthermia therapy of prostate cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Qing Xia ◽  
Tao Han ◽  
Pinghua Yang ◽  
Ruoyu Wang ◽  
Hengyu Li ◽  
...  

Background. MicroRNAs (miRNAs) play a critical role in the regulation of cancer stem cells (CSCs). However, the role of miRNAs in liver CSCs has not been fully elucidated. Methods. Real-time PCR was used to detect the expression of miR-miR-28-5p in liver cancer stem cells (CSCs). The impact of miR-28-5p on liver CSC expansion was investigated both in vivo and in vitro. The correlation between miR-28-5p expression and sorafenib benefits in HCC was further evaluated in patient-derived xenografts (PDXs). Results. Our data showed that miR-28-5p was downregulated in sorted EpCAM- and CD24-positive liver CSCs. Biofunctional investigations revealed that knockdown miR-28-5p promoted liver CSC self-renewal and tumorigenesis. Consistently, miR-28-5p overexpression inhibited liver CSC’s self-renewal and tumorigenesis. Mechanistically, we found that insulin-like growth factor-1 (IGF-1) was a direct target of miR-28-5p in liver CSCs, and the effects of miR-28-5p on liver CSC’s self-renewal and tumorigenesis were dependent on IGF-1. The correlation between miR-28-5p and IGF-1 was confirmed in human HCC tissues. Furthermore, the miR-28-5p knockdown HCC cells were more sensitive to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrated that the miR-28-5p may predict sorafenib benefits in HCC patients. Conclusion. Our findings revealed the crucial role of the miR-28-5p in liver CSC expansion and sorafenib response, rendering miR-28-5p an optimal therapeutic target for HCC.


Author(s):  
Qiuping Liu ◽  
Jinghui Sun ◽  
Qing Luo ◽  
Yang Ju ◽  
Guanbin Song

Background: Accumulating evidence has revealed the important role of cancer stem cells (CSCs) in driving tumor initiation and tumor relapse or metastasis. Therapeutic strategies that selectively target CSCs may be effective approaches to eliminate cancer. Salinomycin, an antitumor agent, was identified as a selective inhibitor of several types of CSCs. We previously reported that salinomycin inhibits the migration and invasiveness of liver cancer stem cells (LCSCs). Objective: This study was conducted to explore the role of salinomycin in supressing stemness properties of LCSCs and the mechanism. Methods: LCSCs were identified and enriched from MHCC97H cells. Salinomycin was used to treat LCSCs at the indicated concentrations. Sphere formation ability, chemotherapy resistance, expression of CSC surface markers, Young's modulus and tumorigenicity of LCSCs were assessed to evaluate the effect of salionmycin on LCSCs. The expression of β-catenin was evaluated by western blotting. LiCl was used to activate the Wnt/β-catenin signaling pathway. Results: Salinomycin suppresses the stemness properties of LCSCs. Moreover, salinomycin could also inhibit the activation of Wnt/β-catenin signaling in LCSCs. Nevertheless, the stemness properties of LCSCs could be recovered when Wnt/β-catenin signaling was activated by LiCl. Further studies demonstrated that salinomycin also significantly reduces the tumorigenicity of LCSCs in vivo by suppressing the Wnt/β-catenin signaling pathway. Conclusion: Salinomycin could suppress stemness properties and induce differentiation of LCSCs through the Wnt/β-catenin signaling pathway, which provides evidence that salinomycin may serve as a potential drug for liver cancer therapy targeting LCSCs in the clinic.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chen Wang ◽  
Xiaoxue Jiang ◽  
Xiaonan Li ◽  
Shuting Song ◽  
Qiuyu Meng ◽  
...  

Abstract Background The functions of HULC have been demonstrated in several cancers. However, its mechanism has not been elucidated in human liver cancer stem cells. Methods Liver cancer stem cells were isolated from Huh7 cells; gene infection and tumorigenesis test in vitro and in vivo were performed. Results We demonstrate that HULC promotes growth of liver cancer stem cells in vitro and in vivo. Mechanistically, HULC enhances the expression of Sirt1 dependent on miR675 and then induces the cellular autophagy through Sirt1. HULC enhances CyclinD1 and thereby increases pRB and inhibited P21 WAF1/CIP 1 via autophagy-miR675-PKM2 pathway in human liver cancer stem cells. Ultimately, our results demonstrate that CyclinD1 is required for the oncogenic functions of HULC in liver cancer stem cells. Conclusions It reveals the key molecular signaling pathways for HULC and provides important basic information for finding effective tumor therapeutic targets based on HULC.


2020 ◽  
Author(s):  
Sai Ma ◽  
Junping Cheng ◽  
Haiyan Wang ◽  
Ningling Ding ◽  
Feng Zhou ◽  
...  

Abstract Increasing evidence suggests that liver cancer stem cells (LCSCs) are the cellular determinants that promote tumor recurrence and metastases. Aberrantly expressed miRNAs were identified in LCSCs and found to play a significant role in modulating biological characteristics of LCSCs. In this study, we implemented miRNA microarrays in CD133+ LCSCs and found miR-101 expression was downregulated. Increasing miR-101 expression repressed the metastasis and tumorigenic potential in LCSCs. Further investigations showed that ANXA2 was a novel target of miR-101. And we revealed that ANXA2 plays a critical role in acceleration of cell cycle and enhancing the migration and invasion abilities of LCSCs. Elevated ANXA2 increased activation of extracellular signal-regulated kinase (ERK) which regulated SOX2 and cell cycle-related kinases. Moreover, ERK phosphorylation inhibited the expression of early growth response 1 (EGR1) which in turn restrained the transcription of miR-101. In vivo experiments, overexpression of miR-101 produced potent inhibitory effects on the growth of LCSCs xenograft tumors as well as ANXA2 knockdown. Taken together, our findings suggest a novel regulatory loop miR-101/ANXA2/EGR1 in LCSCs and may serve as potential therapeutic targets in liver cancer.


Nanomedicine ◽  
2015 ◽  
Vol 10 (17) ◽  
pp. 2677-2695 ◽  
Author(s):  
Xiaoli Mao ◽  
Junjie Liu ◽  
Zhirong Gong ◽  
He Zhang ◽  
Ying Lu ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1198 ◽  
Author(s):  
Zeynep Firtina Karagonlar ◽  
Soheil Akbari ◽  
Mustafa Karabicici ◽  
Eren Sahin ◽  
Sanem Tercan Avci ◽  
...  

The complex and heterogeneous nature of hepatocellular carcinoma (HCC) hampers the identification of effective therapeutic strategies. Cancer stem cells (CSCs) represent a fraction of cells within tumors with the ability to self-renew and differentiate, and thus significantly contribute to the formation and maintenance of heterogeneous tumor mass. Increasing evidence indicates high plasticity in tumor cells, suggesting that non-CSCs could acquire stem cell properties through de-differentiation or reprogramming processes. In this paper, we reveal KLF4 as a transcription factor that can induce a CSC-like phenotype in non-CSCs through upregulating the EpCAM and E-CAD expression. Our studies indicated that KLF4 could directly bind to the promoter of EpCAM and increase the number of EpCAM+/CD133+ liver cancer stem cells (LCSCs) in the HuH7 HCC cell line. When KLF4 was overexpressed in EpCAM−/CD133− non-stem cells, the expressions of hepatic stem/progenitor cell genes such as CK19, EpCAM and LGR5 were significantly increased. KLF4 overexpressing non-stem cells exhibited greater cell viability upon sorafenib treatment, while the cell migration and invasion capabilities of these cells were suppressed. Importantly, we detected an increased membranous expression and colocalization of β-CAT, E-CAD and EpCAM in the KLF4-overexpressing EpCAM−/CD133− non-stem cells, suggesting that this complex might be required for the cancer stem cell phenotype. Moreover, our in vivo xenograft studies demonstrated that with a KLF4 overexpression, EpCAM−/CD133− non-stem cells attained an in vivo tumor forming ability comparable to EpCAM+/CD133+ LCSCs, and the tumor specimens from KLF4-overexpressing xenografts had increased levels of both the KLF4 and EpCAM proteins. Additionally, we identified a correlation between the KLF4 and EpCAM protein expressions in human HCC tissues independent of the tumor stage and differentiation status. Collectively, our data suggest a novel function for KLF4 in modulating the de-differentiation of tumor cells and the induction of EpCAM+/CD133+ LCSCs in HuH7 HCC cells.


Author(s):  
Xiju Wang ◽  
Ronghua Wang ◽  
Shuya Bai ◽  
Si Xiong ◽  
Yawen Li ◽  
...  

Abstract Background Liver cancer stem cells (LCSCs) contribute to hepatocellular carcinoma (HCC) development, metastasis, and drug resistance. MSI2 and Notch1 signaling are involved in the maintenance of CSCs. However, it is unknown whether MSI2 and Notch1 are involved in the maintenance of CD44v6+ LCSCs. Therefore, we investigated the clinical significance and function of MSI2 and its relationship with Notch1 signaling in the maintenance of stemness properties in CD44v6+ LCSCs. Methods The expression of MSI2 and CD44v6 were detected by fresh specimens and a HCC tissue microarray. The tissue microarray containing 82 HCC samples was used to analyze the correlation between CD44v6 and MSI2. CD44v6+/− cells were isolated using microbeads sorting. We explored the roles of MSI2 and Notch1 signaling in CD44v6+ LCSCs by sphere formation assay, transwell assay, clone formation assay in vitro, and xenograft tumor models in vivo. A Notch RT2 PCR Array, Co-immunoprecipitation, and RNA-immunoprecipitation were used to further investigate the molecular mechanism of MSI2 in activating Notch1 signaling. Results Here, we found MSI2 expression was positively correlated with high CD44v6 expression in HCC tissues, and further correlated with tumor differentiation. CD44v6+ cells isolated from HCC cell lines exhibited increased self-renewal, proliferation, migration and invasion, resistance to Sorafenib and tumorigenic capacity. Both MSI2 and Notch1 signaling were elevated in sorted CD44v6+ cells than CD44v6- cells and played essential roles in the maintenance of stemness of CD44v6+ LCSCs. Mechanically, MSI2 directly bound to Lunatic fringe (LFNG) mRNA and protein, resulting in Notch1 activation. Conclusions Our results demonstrated that MSI2 maintained the stemness of CD44v6+ LCSCs by activating Notch1 signaling through the interaction with LFNG, which could be a potential molecular target for stem cell-targeted therapy for liver cancer.


Sign in / Sign up

Export Citation Format

Share Document