scholarly journals Low Molar Mass Dextran: One-Step Synthesis With Dextransucrase by Site-Directed Mutagenesis and its Potential of Iron-Loading

Author(s):  
Tingting Wang ◽  
Zhiming Jiang ◽  
Yiya Wang ◽  
Hao Wu ◽  
Yan Fang ◽  
...  

Iron dextran is a common anti-anemia drug, and it requires low molar mass dextran as substrate. In this work, we selected 11 amino acid residues in domain A/B of DSR-MΔ2 within a 5-angstrom distance from sucrose for site-directed mutagenesis by molecular docking. Mutation of Q634 did not affect the enzyme catalytic activity, but showed an obvious impact on the ratio of low molecular weight dextran (L-dextran, 3,000–5,000 Da) and relatively higher molecular weight dextran (H-dextran, around 10,000 Da). L-dextran was the main product synthesized by DSR-MΔ2 Q634A, and its average molecular weight was 3,951 Da with a polydispersity index <1.3. The structural characterization of this homopolysaccharide revealed that it was a dextran, with 86.0% α(1→6) and 14.0% α(1→4) glycosidic linkages. Moreover, L-dextran was oxidized with NaOH and chelated with ferric trichloride, and an OL-dextran-iron complex was synthesized with a high iron-loading potential of 33.5% (w/w). Altogether, mutation of amino acids near the sucrose binding site of dextransucrase can affect the chain elongation process, making it possible to modulate dextran size.

1997 ◽  
Vol 75 (6) ◽  
pp. 687-696 ◽  
Author(s):  
Tamo Fukamizo ◽  
Ryszard Brzezinski

Novel information on the structure and function of chitosanase, which hydrolyzes the beta -1,4-glycosidic linkage of chitosan, has accumulated in recent years. The cloning of the chitosanase gene from Streptomyces sp. strain N174 and the establishment of an efficient expression system using Streptomyces lividans TK24 have contributed to these advances. Amino acid sequence comparisons of the chitosanases that have been sequenced to date revealed a significant homology in the N-terminal module. From energy minimization based on the X-ray crystal structure of Streptomyces sp. strain N174 chitosanase, the substrate binding cleft of this enzyme was estimated to be composed of six monosaccharide binding subsites. The hydrolytic reaction takes place at the center of the binding cleft with an inverting mechanism. Site-directed mutagenesis of the carboxylic amino acid residues that are conserved revealed that Glu-22 and Asp-40 are the catalytic residues. The tryptophan residues in the chitosanase do not participate directly in the substrate binding but stabilize the protein structure by interacting with hydrophobic and carboxylic side chains of the other amino acid residues. Structural and functional similarities were found between chitosanase, barley chitinase, bacteriophage T4 lysozyme, and goose egg white lysozyme, even though these proteins share no sequence similarities. This information can be helpful for the design of new chitinolytic enzymes that can be applied to carbohydrate engineering, biological control of phytopathogens, and other fields including chitinous polysaccharide degradation. Key words: chitosanase, amino acid sequence, overexpression system, reaction mechanism, site-directed mutagenesis.


Biochemistry ◽  
2014 ◽  
Vol 53 (44) ◽  
pp. 6924-6933 ◽  
Author(s):  
Nicola Giangregorio ◽  
Lara Console ◽  
Annamaria Tonazzi ◽  
Ferdinando Palmieri ◽  
Cesare Indiveri

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6806
Author(s):  
Bruna F. Mazzeu ◽  
Tatiana M. Souza-Moreira ◽  
Andrew A. Oliveira ◽  
Melissa Remlinger ◽  
Lidiane G. Felippe ◽  
...  

Friedelin, a pentacyclic triterpene found in the leaves of the Celastraceae species, demonstrates numerous biological activities and is a precursor of quinonemethide triterpenes, which are promising antitumoral agents. Friedelin is biosynthesized from the cyclization of 2,3-oxidosqualene, involving a series of rearrangements to form a ketone by deprotonation of the hydroxylated intermediate, without the aid of an oxidoreductase enzyme. Mutagenesis studies among oxidosqualene cyclases (OSCs) have demonstrated the influence of amino acid residues on rearrangements during substrate cyclization: loss of catalytic activity, stabilization, rearrangement control or specificity changing. In the present study, friedelin synthase from Maytenus ilicifolia (Celastraceae) was expressed heterologously in Saccharomyces cerevisiae. Site-directed mutagenesis studies were performed by replacing phenylalanine with tryptophan at position 473 (Phe473Trp), methionine with serine at position 549 (Met549Ser) and leucine with phenylalanine at position 552 (Leu552Phe). Mutation Phe473Trp led to a total loss of function; mutants Met549Ser and Leu552Phe interfered with the enzyme specificity leading to enhanced friedelin production, in addition to α-amyrin and β-amyrin. Hence, these data showed that methionine 549 and leucine 552 are important residues for the function of this synthase.


1991 ◽  
Vol 279 (1) ◽  
pp. 35-41 ◽  
Author(s):  
R Chambert ◽  
M F Petit-Glatron

The levansucrase (sucrose:2,6-beta-D-fructan 6-beta-D-fructosyltransferase, EC 2.4.1.10) structural gene from a Bacillus subtilis mutant strain displaying a low polymerase activity was sequenced. Only one missense mutation changing Arg331 to His was responsible for this modified catalytic property. From this allele we created new mutations by directed mutagenesis, which modified the charge and polarity of site 331. Examination of the kinetics of the purified levansucrase variants revealed that transfructosylation activities are affected differently by the substitution chosen. His331→Arg completely restored the properties of the wild-type enzyme. The most striking feature of the other variants, namely Lys331, Ser331 and Leu331, was that they lost the ability of the wild-type enzyme to synthesize levan from sucrose alone. They were only capable of catalysing the first step of levan chain elongation, which is the formation of the trisaccharide ketose. The variant His331→Lys presented a higher kcat. for sucrose hydrolysis than the wild-type, and only this hydrolase activity was preserved in a solvent/water mixture in which the wild-type acted as a true polymerase. The two other substitutions reduced the efficiency of transfructosylation activities of the enzyme via the decrease of the rate of fructosyl-enzyme intermediate formation. For all variants, the sucrose affinity was slightly affected. This strong modulation of the enzyme specificities from a single amino acid substitution led us to postulate the hypothesis that bacterial levansucrases and plant fructosyltransferases involved in fructan synthesis may possess a common ancestral form.


2018 ◽  
Vol 19 (10) ◽  
pp. 2928 ◽  
Author(s):  
Winfried Roseboom ◽  
Madhvi Nazir ◽  
Nils Meiresonne ◽  
Tamimount Mohammadi ◽  
Jolanda Verheul ◽  
...  

Cell division in bacteria is initiated by the polymerization of FtsZ at midcell in a ring-like structure called the Z-ring. ZapA and other proteins assist Z-ring formation and ZapA binds ZapB, which senses the presence of the nucleoids. The FtsZ–ZapA binding interface was analyzed by chemical cross-linking mass spectrometry (CXMS) under in vitro FtsZ-polymerizing conditions in the presence of GTP. Amino acids residue K42 from ZapA was cross-linked to amino acid residues K51 and K66 from FtsZ, close to the interphase between FtsZ molecules in protofilaments. Five different cross-links confirmed the tetrameric structure of ZapA. A number of FtsZ cross-links suggests that its C-terminal domain of 55 residues, thought to be largely disordered, has a limited freedom to move in space. Site-directed mutagenesis of ZapA reveals an interaction site in the globular head of the protein close to K42. Using the information on the cross-links and the mutants that lost the ability to interact with FtsZ, a model of the FtsZ protofilament–ZapA tetramer complex was obtained by information-driven docking with the HADDOCK2.2 webserver.


1997 ◽  
Vol 323 (2) ◽  
pp. 415-419 ◽  
Author(s):  
Lakshmi KASTURI ◽  
Hegang CHEN ◽  
Susan H. SHAKIN-ESHLEMAN

N-linked glycosylation can profoundly affect protein expression and function. N-linked glycosylation usually occurs at the sequon Asn-Xaa-Ser/Thr, where Xaa is any amino acid residue except Pro. However, many Asn-Xaa-Ser/Thr sequons are glycosylated inefficiently or not at all for reasons that are poorly understood. We have used a site-directed mutagenesis approach to examine how the Xaa and hydroxy (Ser/Thr) amino acid residues in sequons influence core-glycosylation efficiency. We recently demonstrated that certain Xaa amino acids inhibit core glycosylation of the sequon, Asn37-Xaa-Ser, in rabies virus glycoprotein (RGP). Here we examine the impact of different Xaa residues on core-glycosylation efficiency when the Ser residue in this sequon is replaced with Thr. The core-glycosylation efficiencies of RGP variants with different Asn37-Xaa-Ser/Thr sequons were compared by using a cell-free translation/glycosylation system. Using this approach we confirm that four Asn-Xaa-Ser sequons are poor oligosaccharide acceptors: Asn-Trp-Ser, Asn-Asp-Ser, Asn-Glu-Ser and Asn-Leu-Ser. In contrast, Asn-Xaa-Thr sequons are efficiently glycosylated, even when Xaa = Trp, Asp, Glu or Leu. A comparison of the glycosylation status of Asn-Xaa-Ser and Asn-Xaa-Thr sequons in other glycoproteins confirms that sequons with Xaa = Trp, Asp, Glu or Leu are rarely glycosylated when Ser is the hydroxy amino acid residue, and that these sequons are unlikely to serve as glycosylation sites when introduced into proteins by site-directed mutagenesis.


Sign in / Sign up

Export Citation Format

Share Document