scholarly journals Tumor-Suppressive Role of microRNA-202-3p in Hepatocellular Carcinoma Through the KDM3A/HOXA1/MEIS3 Pathway

Author(s):  
Yijie Zhang ◽  
Qi Pan ◽  
Zigong Shao

Hepatocellular carcinoma (HCC) represents a malignant tumor predominantly arising in the setting of cirrhosis and is the third most common cause of cancer-associated death on a global scale. The heterogeneous nature of HCC and limited well-recognized biomarkers may contribute to poor patient prognosis and treatment failure. In this study, we identified expression pattern of microRNA-202-3p (miR-202-3p) in HCC and characterized its functional role as well as related mechanisms. First, we collected 50 HCC tissues and 38 normal liver tissues, and after bioinformatics prediction, the expression of miR-202-3p and KDM3A was determined in the tissues. We found lowly expressed miR-202-3p and overexpressed KDM3A in HCC tissues. Then, dual-luciferase reporter gene assay was employed to test the presence of miR-202-3p binding sites in the 3’UTR of KDM3A and chromatin immunoprecipitation (ChIP) assay to homeobox A1 (HOXA1) interaction with KDM3A and MEIS3. It has been confirmed that miR-202-3p negatively regulated KDM3A responsible for increasing the expression of HOXA1 by eliminating the histone H3 lysine 9 (H3K9)me2 in HCC cells. HOXA1 could evidently increase H3K4me1 and H3K27ac enrichment in the MEIS3 enhancer region and enhance the expression of MEIS3. Functional assays were also performed with the results showing that upregulated miR-202-3p or downregulated KDM3A retarded HCC cell viability, migration, and invasion. In addition, HepG2 cells were xenografted into nude mice, and we demonstrated that upregulated miR-202-3p reduced the growth of human HCC cells in vivo. Taken together, the present study elicits a novel miR-202-3p/KDM3A/HOXA1/MEIS3 pathway in HCC, potentiating an exquisite therapeutic target for HCC.

2020 ◽  
Author(s):  
Hong-Guang Li ◽  
Heng-Jun Gao ◽  
Fang-Feng Liu ◽  
Jun Liu

Abstract Background: Even though earlier reports have revealed that abnormal spindle-like microcephaly associated (ASPM) exert essential roles in diverse malignancies, its relationship between specific microRNAs (miRNAs) in regulation of hepatocellular carcinoma (HCC) progression has never been elaborated. Methods: Bioinformatics analysis detected differentially expressed genes in HCC and normal. qRT-PCR was performed to detect expression of miR-26b-5p in HCC tissues and cells. HCC cells were transfected with plasmids and their proliferative ability and colony formation were detected with loss-of-function assay. The invasion of HCC cells was determined using Transwell assay. The expression of ASPM was detected by western blotting. Luciferase reporter gene assay was performed to detect the interaction between miR-26b-5p and ASPM. ASMP silencing cells were injected into mice to establish xenograft tumor model.Results: Herein, we proved that ASPM was upregulated in HCC and higher level of ASPM was significantly associated with worse survival in HCC patients. ASPM silencing restrained HCC cell proliferation, migration and invasion capacities in vitro. In vivo, downregulation of ASPM also suppressed HCC cells growth. Mechanistic analyses illustrated that ASPM was a directly target of miR-26b-5p. The expression of ASPM was negatively modulated by miR-26b-5p. Rescues assays displayed that miR-26b-5p inhibited HCC cells growth and invasion via modulating the expression of ASPM. Conclusions: Our work validated that miR-26b-5p restrained the aggressiveness of HCC cells through targeting ASPM.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Xiaoguang Gu ◽  
Jianan Zhang ◽  
Yajuan Ran ◽  
Hena Pan ◽  
JinHong Jia ◽  
...  

AbstractCircular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.


Author(s):  
Haitao Xie ◽  
Hui Zhou ◽  
Yan Jiang ◽  
Wenqian Xu ◽  
Leping Zeng ◽  
...  

IntroductionLong non-coding RNA LINC00641 has been reported to regulate tumor progression in several cancers. However, the expression and function of LINC00641 in hepatocellular carcinoma (HCC) is still unclear.Material and methodsIn this study, we measured the expression of LINC00641 in 79 pairs of HCC and adjacent normal liver tissues. The clinical significance of LINC00641 in HCC was explored. We also investigated the function of LINC00641 in HCC proliferation and invasion.ResultsWe observed that LINC00641 expression was significantly increased in HCC relative to normal tissues (P < 0.0001). High expression of LINC00641 was significantly associated with vascular invasion, advanced TNM stage, and reduced overall survival in HCC patients. Knockdown of LINC00641 inhibited the proliferation, colony formation, and invasion of HCC cells. In contrast, overexpression of LINC00641 promoted HCC cell growth and invasiveness. In vivo studies confirmed that knockdown of LINC00641 restrained tumorigenesis of HCC cells. Mechanistic studies revealed that LINC00641 inhibited the expression of miR-501-3p, which has been previously reported to act as a tumor suppressor in HCC. Furthermore, luciferase reporter assays validated that LINC00641 harbored a target site for miR-501-3p. Rescue experiments demonstrated that LINC00641-induced proliferation and invasion of HCC cells was reversed by co-expression of miR-501-3p.ConclusionsTaken together, LINC00641 contributes to aggressive phenotype of HCC cells by sponging miR-501-3p and represents a promising therapeutic target for this disease.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qun Dai ◽  
Jingyi Deng ◽  
Jinrong Zhou ◽  
Zhuhong Wang ◽  
Xiao-feng Yuan ◽  
...  

Abstract Background Accumulating evidence indicates that the long noncoding RNA taurine upregulated gene 1(TUG1) plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of TUG1 in hepatocellular carcinoma (HCC) remain largely unknown. Methods The expressions of TUG1, microRNA-216b-5p and distal-less homeobox 2 (DLX2) were detected by Quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships were predicted by StarBase v.2.0 or TargetScan and confirmed by dual-luciferase reporter assay. The cell growth, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow cytometry and Transwell assays, respectively. All protein expression levels were detected by western blot. Tumor xenografts were implemented to explore the role of TUG1 in vivo. Results We found that there was a marked rise in TUG1 expression in HCC tissues and cells, and knockdown of TUG1 repressed the growth and metastasis and promoted apoptosis of HCC cells. In particular, TUG1 could act as a ceRNA, effectively becoming a sink for miR-216b-5p to fortify the expression of DLX2. Additionally, repression of TUG1 impared the progression of HCC cells by inhibiting DLX2 expression via sponging miR-216b-5p in vitro. More importantly, TUG1 knockdown inhibited HCC tumor growth in vivo through upregulating miR-216b-5p via inactivation of the DLX2. Conclusion TUG1 interacting with miR-216b-5p contributed to proliferation, metastasis, tumorigenesis and retarded apoptosis by activation of DLX2 in HCC.


2020 ◽  
Vol 19 ◽  
pp. 153303382095702
Author(s):  
Xue-zhen Song ◽  
Xiao-ning Ren ◽  
Xiao-jun Xu ◽  
Xiao-xuan Ruan ◽  
Yi-li Wang ◽  
...  

Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. Emerging evidence has suggested that lncRNAs play an important role in cancer progression, including HCC. This study aimed to comprehensively investigate the effect of lncRNA RHPN1 antisense RNA 1 (RHPN1-AS1) on HCC and its underlying molecular mechanism. In this study, we evaluated the expressions of lncRNA RHPN1-AS1 and miR-7-5p by qRT-RCR in both HCC tissue and HCC cells. Our findings showed that lncRNA RHPN1-AS1 was upregulated in HCC tissue and HCC cells, while miR-7-5p was downregulated. LncRNA RHPN1-AS1 expression in HCC patients was closely related to vascular invasion, tumor-node-metastasis (TNM) stage and barcelona clinic liver cancer (BCLC) stage. Furthermore, we quantified cell clone-formation ability, proliferation, migration and invasion of HCCLM3 and MHCC97 H cells using several assays (colony formation assay, 5-Ethynyl-2′-deoxyuridine (EdU) assay and transwell assay, respectively). Functional experiments confirmed that silencing lncRNA RHPN1-AS1 inhibited cell proliferation, migration and invasion in HCCLM3 and MHCC97 H cells. After that, bioinformatics analysis, dual luciferase reporter gene assay, qRT-PCR and western blot were used to investigate the molecular mechanism of lncRNA RHPN1-AS1 on HCC. Mechanistically, the rescue experiments demonstrated that miR-7-5p inhibitor reversed the inhibition effect of silencing lncRNA RHPN1-AS1 on HCCLM3 cells proliferation, migration and invasion. Moreover, silencing lncRNA RHPN1-AS1 also inhibited the activation of PI3K/AKT/mTOR pathway. Taken together our findings demonstrated that lncRNA RHPN1-AS1 could facilitate cell proliferation, migration and invasion via targeting miR-7-5p and activating PI3K/AKT/mTOR pathway in HCC.


2021 ◽  
Vol 17 ◽  
pp. 174480692110418
Author(s):  
Wei Sun ◽  
Yijun Zhang ◽  
Guanghui Wang

Background It has been increasingly reported that microRNAs (miRNAs) are related to rheumatoid arthritis (RA) pathogenesis. This present research was conducted to analyze the functions of miR-137 and the underlying molecular mechanism in RA progression. Methods Differentially expressed miRNAs in RA patients were analyzed using microarray-based analyses. Next, experiments involving miR-137 overexpression were performed to analyze the role of miR-137 in human fibroblast-like synoviocytes-RA (HFLS-RA) using cell counting kit-8 (CCK-8) assay, EdU staining, Transwell assay and flow cytometry, respectively. The function of miR-137 in inflammation was determined using ELISA. The binding relationship between miR-137 and LSD1 was confirmed by dual-luciferase reporter gene assay and ChIP test. Besides, a rat model with RA was established for in vivo experiments. Results miR-137 was downregulated in RA tissues and cells, which was negatively correlated with inflammatory factors. Upregulated miR-137 suppressed growth, migration and invasion of HFLS-RA, but promoted apoptosis. Lysine-specific demethylase-1 (LSD1) was a target of miR-137 and could be negatively regulated by miR-137. Moreover, LSD1 could activate REST through demethylation, while the REST/mTOR pathway induced levels of pro-inflammatory factors in RA. We observed the similar results in our in vivo study. Conclusion This study suggested that miR-137 reduced LSD1 expression to inhibit the activation of REST/mTOR pathway, thus preventing against inflammation and ameliorating RA development. Our research may offer new insights into treatment of RA.


2020 ◽  
Author(s):  
Nan Yang ◽  
Tianxiang Chen ◽  
Bowen Yao ◽  
Liang Wang ◽  
Runkun Liu ◽  
...  

Abstract Background: Long non-coding RNAs (lncRNAs) have obtained growing attention due to their potential effects as novel regulators in various tumors. This study aimed to investigate the expression and roles of lncRNA ZFPM2-AS1 in the progression of hepatocellular carcinoma (HCC). Methods: Transwell was used to determine migration and invasion of HCC cells in vitro. The lung metastasis mouse model was established to detect tumor metastasis of HCC in vivo. The direct binding of miR-3612 to 3'UTR of DAM15 was confirmed by luciferase reporter assay. The expression of ZFPM2-AS1 and miR-3612 in HCC specimens and cell lines were detected by real-time PCR. The correlation among ZFPM2-AS1 and miR-3612 were disclosed by a dual-luciferase reporter assay, RIP assay and biotin pull-down assay.Results: In present study, we found that ZFPM2-AS1 was up-regulated in HCC tissues and cells and its upregulation was associated with TNM stage, vascular invasion, and poor prognosis of HCC patients. Functionally, gain- and loss-of-function experiments indicated that ZFPM2-AS1 promoted cell migration, invasion and EMT progress in vitro and in vivo. ZFPM2-AS1 could function as a competing endogenous RNA (ceRNA) by sponging miR-3612 in HCC cells. Mechanically, miR-3612 inhibited HCC metastasis and alternation of miR-3612 reversed the promotive effects of ZFPM2-AS1 on HCC cells. In addition, we confirmed that ADAM15 was a direct target of miR-3612 in HCC and mediated the biological effects of miR-3612 and ZFPM2-AS1 in HCC. Curcumin, an active derivative from turmeric, exerts its anticancer effects through ZFPM2-AS1/miR-3612/ADAM15 pathway. Our data identified ZFPM2-AS1 as a novel oncogenic lncRNA and correlated malignant clinical outcomes in HCC patients. Conclusions: ZFPM2-AS1 performed as oncogenic role via targeting miR-3612 and subsequently promoted ADAM15 expression in HCC. Our results revealed that ZFPM2-AS1 could be a potential prognostic biomarker and therapeutic target for HCC.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Xiaohui Duan ◽  
Wei Li ◽  
Peng Hu ◽  
Bo Jiang ◽  
Jianhui Yang ◽  
...  

Abstract Hepatocellular carcinoma (HCC) remains one of the most common malignant tumors worldwide. The present study aimed to investigate the biological role of microRNA-183-5p (miR-183-5p), a novel tumor-related microRNA (miRNA), in HCC and illuminate the possible molecular mechanisms. The expression patterns of miR-183-5p in clinical samples were characterized using qPCR analysis. Kaplan–Meier survival curve was applied to evaluate the correlation between miR-183-5p expression and overall survival of HCC patients. Effects of miR-183-5p knockdown on HCC cell proliferation, apoptosis, migration and invasion capabilities were determined via Cell Counting Kit-8 (CCK8) assays, flow cytometry, scratch wound healing assays and Transwell invasion assays, respectively. Mouse neoplasm transplantation models were established to assess the effects of miR-183-5p knockdown on tumor growth in vivo. Bioinformatics analysis, dual-luciferase reporter assays and rescue assays were performed for mechanistic researches. Results showed that miR-183-5p was highly expressed in tumorous tissues compared with adjacent normal tissues. Elevated miR-183-5p expression correlated with shorter overall survival of HCC patients. Moreover, miR-183-5p knockdown significantly suppressed proliferation, survival, migration and invasion of HCC cells compared with negative control treatment. Consistently, miR-183-5p knockdown restrained tumor growth in vivo. Furthermore, programmed cell death factor 4 (PDCD4) was identified as a direct target of miR-183-5p. Additionally, PDCD4 down-regulation was observed to abrogate the inhibitory effects of miR-183-5p knockdown on malignant phenotypes of HCC cells. Collectively, our data suggest that miR-183-5p may exert an oncogenic role in HCC through directly targeting PDCD4. The current study may offer some new insights into understanding the role of miR-183-5p in HCC.


2020 ◽  
Author(s):  
Yabin Yu ◽  
Suyang Han ◽  
Meng Li ◽  
Yan Song ◽  
Fuzhen Qi

Abstract Background Circular RNA (circRNA), a novel type of non-coding RNA, could interact with miRNA and protein molecules to regulate the occurrence and progression of hepatocellular carcinoma (HCC). However, little is known about the pathogenesis of circ_0004913 in HCC.Materials Through the GEO (Gene Expression Omnibus database) to find dysfunctional circRNAs in HCC, and circ_0004913 was selected as the research object. Quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression level of circ_0067934 in HCC tissues and cells. CCK-8, Edu and flow cytometry assays were chosed to determine the malignant behavior of transfected HCC cells. Mechanistically, RNA immunoprecipitation and dual-luciferase reporter gene assay were performed to explore the relation between circ_0067934, miR-1290 and FOXC1 (Forkhead box C1) in HCC.Results The expression of circ_0004913 was down-regulated in HCC tissues and cell lines, while the overexpression of circ_0004913 attenuates the malignant behavior of HCC cells. Bioinformatics predicted that circ_0004913 interacts with miR-1290, which targeted FOXC1 mRNA. In fact, miR-1290 promoted the malignant behavior of HCC cells, while FOXC1 had the opposite effect. In addition, circ_0004913 overexpression enhanced FOXC1 expression by reducing miR-1290 expression, thereby inhibiting the proliferation of HCC cells.Conclusion Circ_0004913 / miR-1290 / FOXC1 regulatory axis could inhibit the progress of HCC. Our findings may provide potential new targets for the diagnosis and treatment of HCC.


2020 ◽  
Vol 52 (5) ◽  
pp. 554-562
Author(s):  
Yuke Zhang ◽  
Kun Shi ◽  
Hang Liu ◽  
Wei Chen ◽  
Yunhai Luo ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is one of the most lethal cancers in the world. MicroRNAs play a pivotal role in the progression of various cancers. To date, very little attention has been paid to miR-4458. Therefore, the aim of our study was to explore the function and underlying molecular mechanism of miR-4458 in HCC. We found that the expression of miR-4458 was reduced in HCC tissues and cell lines. Forced overexpression of miR-4458 inhibited the migration, invasion, and epithelial–mesenchymal transition (EMT) of HCC cells, while downregulation of miR-4458 promoted the aggressive phenotype. Furthermore, transforming growth factor beta receptor 1 (TGFBR1), the modulator of the TGF-β signaling pathway, was verified to be a novel target gene of miR-4458 by dual-luciferase reporter gene assay. Upregulated miR-4458 dramatically abolished TGFBR1 and p-Smad2/3 expression, thus blocking the TGF-β signaling pathway. Moreover, restoration of TGFBR1 partially rescued the miR-4458-mediated suppressive effect on the migration, invasion, and EMT and reactivated the TGF-β signaling pathway in HCC cells. In summary, our findings first demonstrated a mechanism of miR-4458 in HCC cell migration, invasion, and EMT by regulating the TGF-β signaling pathway via directly targeting TGFBR1.


Sign in / Sign up

Export Citation Format

Share Document