scholarly journals MicroRNA-137-mediated inhibition of lysine-specific demethylase-1 prevents against rheumatoid arthritis in an association with the REST/mTOR axis

2021 ◽  
Vol 17 ◽  
pp. 174480692110418
Author(s):  
Wei Sun ◽  
Yijun Zhang ◽  
Guanghui Wang

Background It has been increasingly reported that microRNAs (miRNAs) are related to rheumatoid arthritis (RA) pathogenesis. This present research was conducted to analyze the functions of miR-137 and the underlying molecular mechanism in RA progression. Methods Differentially expressed miRNAs in RA patients were analyzed using microarray-based analyses. Next, experiments involving miR-137 overexpression were performed to analyze the role of miR-137 in human fibroblast-like synoviocytes-RA (HFLS-RA) using cell counting kit-8 (CCK-8) assay, EdU staining, Transwell assay and flow cytometry, respectively. The function of miR-137 in inflammation was determined using ELISA. The binding relationship between miR-137 and LSD1 was confirmed by dual-luciferase reporter gene assay and ChIP test. Besides, a rat model with RA was established for in vivo experiments. Results miR-137 was downregulated in RA tissues and cells, which was negatively correlated with inflammatory factors. Upregulated miR-137 suppressed growth, migration and invasion of HFLS-RA, but promoted apoptosis. Lysine-specific demethylase-1 (LSD1) was a target of miR-137 and could be negatively regulated by miR-137. Moreover, LSD1 could activate REST through demethylation, while the REST/mTOR pathway induced levels of pro-inflammatory factors in RA. We observed the similar results in our in vivo study. Conclusion This study suggested that miR-137 reduced LSD1 expression to inhibit the activation of REST/mTOR pathway, thus preventing against inflammation and ameliorating RA development. Our research may offer new insights into treatment of RA.

2021 ◽  
Vol 35 ◽  
pp. 205873842110167
Author(s):  
Zhensen Zhu ◽  
Bo Chen ◽  
Liang Peng ◽  
Songying Gao ◽  
Jingdong Guo ◽  
...  

Activated M2 macrophages are involved in hypertrophic scar (HS) formation via manipulating the differentiation of fibroblasts to myofibroblasts having the proliferative capacity and biological function. However, the function of exosomes derived from M2 macrophages in HS formation is unclear. Thus, this study aims to investigate the role of exosomes derived by M2 in the formation of HS. To understand the effect of exosomes derived from M2 macrophages on formation of HS, M2 macrophages were co-cultured with human dermal fibroblast (HDF) cells. Cell Counting Kit-8 assay was performed to evaluate HDF proliferation. To evaluate the migration and invasion of HDFs, wound-healing and transwell invasion assays were performed, respectively. To investigate the interaction between LINC01605 and miR-493-3p, a dual-luciferase reporter gene assay was adopted; consequently, an interaction between miR-493-3p and AKT1 was detected. Our results demonstrated that exosomes derived from M2 macrophages promoted the proliferation, migration, and invasion of HDFs. Additionally, we found that long noncoding RNA LINC01605, enriched in exosomes derived from M2 macrophages, promoted fibrosis of HDFs and that GW4869, an inhibitor of exosomes, could revert this effect. Mechanistically, LINC01605 promoted fibrosis of HDFs by directly inhibiting the secretion of miR-493-3p, and miR-493-3p down-regulated the expression of AKT1. Exosomes derived from M2 macrophages promote the proliferation and migration of HDFs by transmitting LINC01605, which may activate the AKT signaling pathway by sponging miR-493-3p. Our results provide a novel approach and basis for further investigation of the function of M2 macrophages in HS formation.


2020 ◽  
Vol 68 (8) ◽  
pp. 1349-1356
Author(s):  
Yujin Wang ◽  
Jixiang Wang ◽  
Hongyan Hao ◽  
Xiangxia Luo

It is reported that lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) is oncogenic in many cancers. This work aimed at probing into its expression and biological functions in retinoblastoma (RB) as well as its regulatory effects on miR-153-3p and hypoxia-inducible factor-1α (HIF-1α). In our study, RB samples in pair were collected, and quantitative real-time PCR (qRT-PCR) was employed for examining the expression levels of KCNQ1OT1, miR-153-3p and HIF-1α. KCNQ1OT1 short hairpin RNAs were transfected into SO-Rb50 and HXO-RB44 cell to inhibit the expression of KCNQ1OT1. The proliferative activity, colony formation ability and apoptosis were examined through cell counting kit-8 assay, colony formation assays, Transwell assay and flow cytometry, respectively. qRT-PCR and western blot analysis were used for analyzing the changes of miR-153-3p and HIF-1α induced by KCNQ1OT1. The regulatory relationships between miR-153-3p and KCNQ1OT1, miR-153-3p and HIF-1α were examined by dual luciferase reporter gene assay and RNA-binding protein immunoprecipitation assay. The results of our study showed that KCNQ1OT1 expression was markedly enhanced in RB tissue samples, and KCNQ1OT1 knockdown had an inhibitory effect on the proliferation, migration, invasion and viability of RB cells. There were two validated binding sties between KCNQ1OT1 and miR-153-3p, and KCNQ1OT1 negatively regulated the expression of miR-153-3p in RB cells. HIF-1α was a target gene of miR-153-3p, and could be positively regulated by KCNQ1OT1. In conclusion, our study indicates that KCNQ1OT1 can increase the malignancy of RB cells via regulating miR-153-3p/HIF-1α axis.


Author(s):  
Yijie Zhang ◽  
Qi Pan ◽  
Zigong Shao

Hepatocellular carcinoma (HCC) represents a malignant tumor predominantly arising in the setting of cirrhosis and is the third most common cause of cancer-associated death on a global scale. The heterogeneous nature of HCC and limited well-recognized biomarkers may contribute to poor patient prognosis and treatment failure. In this study, we identified expression pattern of microRNA-202-3p (miR-202-3p) in HCC and characterized its functional role as well as related mechanisms. First, we collected 50 HCC tissues and 38 normal liver tissues, and after bioinformatics prediction, the expression of miR-202-3p and KDM3A was determined in the tissues. We found lowly expressed miR-202-3p and overexpressed KDM3A in HCC tissues. Then, dual-luciferase reporter gene assay was employed to test the presence of miR-202-3p binding sites in the 3’UTR of KDM3A and chromatin immunoprecipitation (ChIP) assay to homeobox A1 (HOXA1) interaction with KDM3A and MEIS3. It has been confirmed that miR-202-3p negatively regulated KDM3A responsible for increasing the expression of HOXA1 by eliminating the histone H3 lysine 9 (H3K9)me2 in HCC cells. HOXA1 could evidently increase H3K4me1 and H3K27ac enrichment in the MEIS3 enhancer region and enhance the expression of MEIS3. Functional assays were also performed with the results showing that upregulated miR-202-3p or downregulated KDM3A retarded HCC cell viability, migration, and invasion. In addition, HepG2 cells were xenografted into nude mice, and we demonstrated that upregulated miR-202-3p reduced the growth of human HCC cells in vivo. Taken together, the present study elicits a novel miR-202-3p/KDM3A/HOXA1/MEIS3 pathway in HCC, potentiating an exquisite therapeutic target for HCC.


2021 ◽  
Author(s):  
Jianjie Zhao ◽  
Xueqin Wang ◽  
Juan Jiang ◽  
Yao Ding ◽  
qinan wu

Abstract Background: CircRNAs feature prominently in breast cancer (BC) progression. This study was intended to investigate the role of hsa_circ_0000520 in BC progression.Methods: After the sample collection, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted for quantifying the expressions of circ_0000520, miR-542-3p, and sphingosine-1-phosphate receptor 1 (S1PR1) mRNA. 5‐Ethynyl‐2′‐Deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assays were used for measuring cell proliferation. Transwell assays were employed to detect cell migration and invasion. Western blotting was utilized for analyzing S1PR1 protein expression. Dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were used to delve into the targeting relationship between circ_0000520 and miR-542-3p.Results: Circ_0000520 expression was markedly elevated in BC cell lines and tissues, and knockdown of circ_0000520 could inhibit BC cell multiplication, migration, and invasion. Circ_0000520 could target miR-542-3p to negatively regulate S1PR1 expression. S1PR1 overexpression plasmid could counteract the inhibitory effects of circ_0000520 knockdown on BC cell proliferation, migration, and invasion.Conclusion: Circ_0000520, as a cancer-promoting circRNA, participates in BC progression by regulating miR-542-3p/S1PR1 axis.


Author(s):  
Fang Liu ◽  
Yan-Li Wang ◽  
Jie-Mei Wei ◽  
Zhao-Dong Huang

Abstract Circular RNAs (circRNAs) play an important regulatory role in a variety of malignancies. Nevertheless, the role of circ_0000142 in multiple myeloma (MM) and its regulatory mechanism remains largely unknown. Real-time polymerase chain reaction was employed to detect the expressions of circ_0000142 and miR-610 in MM tissues and cell lines. The expression of AKT3 and apoptosis-related proteins (Bcl-2, Bax) in MM cells was detected by western blot. The correlation between the expression level of circ_0000142 and the clinicopathological parameters of MM patients was analysed. Cell proliferation, apoptosis, migration and invasion were monitored by Cell Counting Kit 8 assay, flow cytometry analysis and Transwell assay, respectively. The dual-luciferase reporter gene assay and RNA immunoprecipitation assay were employed to verify the targeting relationship between circ_0000142 and miR-610. In this study, it was demonstrated that, circ_0000142 was highly expressed in MM patients, and its high expression level was significantly associated with increased International Staging System and Durie–Salmon stage. Overexpression of circ_0000142 enhanced MM cell proliferation, migration, invasion and suppressed cell apoptosis, while knocking down circ_0000142 had the opposite effects. Mechanistically, circ_0000142 functioned as a competitive endogenous RNA, directly targeting miR-610 and positively regulating AKT3 expression. In brief, circ_0000142 enhances the proliferation and metastasis of MM cells by modulating the miR-610/AKT3 axis.


2020 ◽  
Author(s):  
Hong-Guang Li ◽  
Heng-Jun Gao ◽  
Fang-Feng Liu ◽  
Jun Liu

Abstract Background: Even though earlier reports have revealed that abnormal spindle-like microcephaly associated (ASPM) exert essential roles in diverse malignancies, its relationship between specific microRNAs (miRNAs) in regulation of hepatocellular carcinoma (HCC) progression has never been elaborated. Methods: Bioinformatics analysis detected differentially expressed genes in HCC and normal. qRT-PCR was performed to detect expression of miR-26b-5p in HCC tissues and cells. HCC cells were transfected with plasmids and their proliferative ability and colony formation were detected with loss-of-function assay. The invasion of HCC cells was determined using Transwell assay. The expression of ASPM was detected by western blotting. Luciferase reporter gene assay was performed to detect the interaction between miR-26b-5p and ASPM. ASMP silencing cells were injected into mice to establish xenograft tumor model.Results: Herein, we proved that ASPM was upregulated in HCC and higher level of ASPM was significantly associated with worse survival in HCC patients. ASPM silencing restrained HCC cell proliferation, migration and invasion capacities in vitro. In vivo, downregulation of ASPM also suppressed HCC cells growth. Mechanistic analyses illustrated that ASPM was a directly target of miR-26b-5p. The expression of ASPM was negatively modulated by miR-26b-5p. Rescues assays displayed that miR-26b-5p inhibited HCC cells growth and invasion via modulating the expression of ASPM. Conclusions: Our work validated that miR-26b-5p restrained the aggressiveness of HCC cells through targeting ASPM.


2020 ◽  
Vol 477 (18) ◽  
pp. 3527-3540
Author(s):  
Aijun Yu ◽  
Luwen Zhao ◽  
Qingmin Kang ◽  
Jian Li ◽  
Kai Chen ◽  
...  

Cholangiocarcinoma (CCA) has accounted for a high rate of mortality and morbidity in the recent years. Long non-coding RNAs (lncRNAs) play an important role in different cellular environments, including cancer. As such, they have been used as potential targets during CCA therapy. The objective of this study was to investigate the effects of lncRNA PVT1 on CCA and its mechanisms behind lncRNA PVT1 regulation. The interactions among SOX2, lncRNA PVT1, miR-186 and SEMA4D were verified by chromatin immunoprecipitation, RNA immunoprecipitation and dual luciferase reporter gene assay. Gain- and loss-of-function experiments were conducted to explore the modulatory effects of SOX2, lncRNA PVT1, miR-186 and SEMA4D on cell viability, migration and invasion of CCA by CCK-8 and Transwell assays. In vivo effects of lncRNA PVT1 or SEMA4D were studied in a nude mouse model. MiR-186 was poorly expressed while SOX2, lncRNA PVT1 and SEMA4D were highly expressed in CCA cells. SOX2 induced the transcriptional activation of lncRNA PVT1 expression to promote proliferation, migration and invasion of CCA cells. LncRNA PVT1 bound to miR-186 and miR-186 was found to target SEMA4D. The overexpression of lncRNA PVT1 and SEMA4D, as well as the inhibition of miR-186 led to elevated CCA cell proliferation, migration and invasion. In vivo experiments confirmed the inhibitory role of lncRNA PVT1 knockdown or SEMA4D knockdown in CCA. All in all, SOX2 down-regulated miR-186 through the transcriptional activation of lncRNA PVT1, whereas elevating SEMA4D expression, thus promoting the progression of CCA.


2020 ◽  
Author(s):  
Chuang Qi ◽  
Xianxiong Qin ◽  
Zuozhi Zhou ◽  
Yan Wang ◽  
Qin Yang ◽  
...  

Abstract Background Circ_0072995 is a novel identified circRNA and has been identified to involve in the metastasis of breast cancer. However, the detailed function and mechanism of circ_0072995 in the biological property of breast cancer cell remain vague. Methods The expression of circ_0072995, microRNA (miR)-149-5p and serine hydroxymethyltransferase 2 (SHMT2) mRNA was detected using quantitative real-time polymerase chain reaction. Western blot was used to detect levels of SHMT2, hexokinase-2 (HK-2), lactate dehydrogenase a chain (LDHA), glucose transporter 1 (GLUT1) and phosphoinositide 3-kinase (PI3K)/p-protein kinase B (AKT) pathway/mammalian target of rapamycin (mTOR) pathway-related protein. Cell proliferation, apoptosis, migration, and invasion were analyzed using cell counting kit-8 assay, flow cytometry, caspase-3 activity analysis, cell adhesion assay and transwell assay, respectively. Glucose metabolism was calculated by measuring glucose uptake, lactate production, and adenosine triphosphate (ATP) levels. The interaction between miR-149-5p and circ_0072995 or SHMT2 was confirmed by dual-luciferase reporter assay. In vivo tumorigenesis was performed using the murine xenograft model. Results Circ_0072995 and SHMT2 were up-regulated in breast cancer tissues and cell lines, and knockdown of circ_0072995 or SHMT2 suppressed cell malignant properties and anaerobic glycolysis; importantly, SHMT2 overexpression attenuated the anticancer action of si-Circ_0072995 in breast cancer. Besides, we also found miR-149-5p directly bound to circ_0072995 or SHMT2 in breast cancer cells, and circ_0072995 promoted the expression of SHMT2 by competitively binding to miR-149-5p. Moreover, circ_0072995 activated PI3K/AKT/mTOR pathway via elevating SHMT2 through miR-149-5p in vitro and in vivo. Additionally, xenograft tumors analysis showed circ_0072995 silence suppressed tumor growth via regulating SHMT2 and miR-149-5p. Conclusion This study demonstrated that circ_0072995 promoted cell malignant phenotypes and anaerobic glycolysis in breast cancer via up-regulating SHMT2 through sponging miR-149-5p, and activated PI3K/AKT/mTOR pathway via miR-149-5p/ SHMT2 axis, indicating a promising molecular target for breast cancer treatment.


2020 ◽  
Vol 68 (8) ◽  
pp. 1357-1363
Author(s):  
Feng-Yu Cao ◽  
Yong-Bin Zheng ◽  
Chao Yang ◽  
Su-Yang Huang ◽  
Xiao-Bo He ◽  
...  

Accumulating studies have shown that the dysregulation of microRNAs is related to the carcinogenesis and development of gastric cancer (GC), and the role of miR-635 in GC remains largely unknown. miR-635 and Kinesin Family Member C1 (KIFC1) mRNA expression in GC tissues and paracancerous tissues and cells were detected by quantitative real-time PCR. KIFC1 protein expression in GC tissues and paracancerous normal tissues and cells was detected by immunohistochemistry and western blot. Cell proliferation was monitored by Cell Counting Kit-8 assay and 5-bromo-2′-deoxyuridine assay. Transwell assay was employed to detect the migration and invasion of GC cells. The dual-luciferase reporter gene assay was adopted to detect the targeting relationship between miR-635 and KIFC1. Compared with paracancerous tissues, miR-635 expression was remarkably decreased in GC tissues; conversely, KIFC1 expression was significantly increased. Compared with human normal gastric epithelial cell GSE-1, miR-635 expression was markedly decreased in GC cell lines. Meanwhile, KIFC1 expression was significantly increased, and the Kaplan-Meier Plotter database showed that its high expression was remarkably associated with poor prognosis. Additionally, miR-635 can negatively regulate KIFC1. miR-635 can target KIFC1 to inhibit proliferation, migration and invasion of GC cells. Collectively, miR-635 is lowly expressed in GC, and it inhibits proliferation, migration and invasion of GC cells via regulating KIFC1.


2020 ◽  
Vol 21 (2) ◽  
pp. 278-286 ◽  
Author(s):  
Shunbin Dong ◽  
Ying Fu ◽  
Kaibo Yang ◽  
Xing Zhang ◽  
Runchen Miao ◽  
...  

Background: Oxaliplatin (L-OHP)-based chemotherapy, such as FOLFOX4 (5-fluorouracil, leucovorin, and LOHP), improves the prognosis of patients with late-stage Hepatocellular Carcinoma (HCC). However, the development of resistance to L-OHP leads to failure of chemotherapy. The aim of this study was to investigate the role of linc01559 and miR-6783-3p in regulating resistance to L-OHP. Methods: Quantitative reverse transcription-polymerase chain reaction was used to determine the expression profile. The Cell Counting Kit-8 test and wound healing assay were also used. Dual-luciferase reporter gene assay, RNA pull-down assay, and RNA immunoprecipitation were used to evaluate the interaction between linc01559 and miR-6783-3p. Result: linc01559 expression was associated with response to FOLFOX4, as well as miR-1343-3p and miR-6783-3p expression in vivo. A nomogram, including linc01559 and miR-1343-3p, precisely and accurately predicted the overall survival of patients with HCC. Regarding the in vitro tests, linc01559 showed higher expression in L-OHP-resistant cell lines, whereas miR-6783-3p was downregulated. Knockdown of linc01559 led to decreased proliferation and migration ability, and increased expression of miR-6783-3p; however, it did not influence the expression of miR-1343-3p. We also found that linc01559 directly interacted with miR-6783-3p. Furthermore, linc01559 and miR-6783-3p regulated the viability of L-OHP-resistant cells following treatment with L-OHP. Conclusion: linc01559 promoted the proliferation of HCC by sponging miR-6783-3p. This suggests that linc01559/miR6783-3p may be key factors in regulating resistance and response to L-OHP. Moreover, they may be potential therapeutic targets for improving sensitivity to L-OHP in patients with HCC.


Sign in / Sign up

Export Citation Format

Share Document