scholarly journals Targeting POLE2 Creates a Novel Vulnerability in Renal Cell Carcinoma via Modulating Stanniocalcin 1

Author(s):  
Chuanjie Zhang ◽  
Yan Shen ◽  
Lili Gao ◽  
Xiaojing Wang ◽  
Da Huang ◽  
...  

ObjectiveThe aim of this study is to investigate the biological functions and the underlying mechanisms of DNA polymerase epsilon subunit 2 (POLE2) in renal cell carcinoma (RCC).MethodsThe datasets of POLE2 expression in The Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC) and International Cancer Genome Consortium (ICGC) databases was selected and the correlation between POLE2 and various clinicopathological parameters was analyzed. The POLE2 expression in RCC tissues was examined by immunohistochemistry. The POLE2 knockdown cell lines were constructed. In vitro and in vivo experiments were carried out to investigate the function of POLE2 on cellular biology of RCC, including cell viability assay, clone formation assay, flow cytometry, wound-healing assay, Transwell assay, qRT-PCR, Western blot, etc. Besides, microarray, co-immunoprecipitation, rescue experiment, and Western blot were used to investigate the molecular mechanisms underlying the functions of POLE2.ResultsPOLE2 was overexpressed in RCC tissues, and high expression of POLE2 was correlated with poor prognosis of RCC. Furthermore, knockdown of POLE2 significantly inhibited cell proliferation, migration, and facilitated apoptosis in vitro. In vivo experiments revealed that POLE2 attenuated RCC tumorigenesis and tumor growth. we also illuminated that stanniocalcin 1 (STC1) was a downstream gene of POLE2, which promoted the occurrence and development of RCC. Besides, knockdown of POLE2 significantly upregulated the expression levels of Bad and p21 while the expression levels of HSP70, IGF-I, IGF-II, survivin, and sTNF-R1 were significantly downregulated. Western blot analysis also showed that knockdown of POLE2 inhibited the expression levels of Cancer-related pathway proteins including p-Akt, CCND1, MAPK9, and PIK3CA.ConclusionKnockdown of POLE2 attenuates RCC cells proliferation and migration by regulating STC1, suggesting that POLE2-STC1 may become a potential target for RCC therapy.

2021 ◽  
Author(s):  
Liu Yihan ◽  
Wang Xiaojing ◽  
Liu Ao ◽  
Zhang Chuanjie ◽  
Wang Haofei ◽  
...  

Abstract Background: The aim of this study is to investigate the biological functions and the underlying mechanisms of SIRT5 in clear cell renal cell carcinoma (ccRCC).Methods: The datasets of SIRT5 expression in The Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC) was selected and the correlation between SIRT5 and various clinicopathological parameters was analyzed. The SIRT5 expression in RCC tissues was examined by immunohistochemistry. The SIRT5 knockdown cell lines were constructed. In vitro and in vivo experiments were carried out to investigate the function of SIRT5 on cellular biology of RCC, including cell viability assay, wound-healing assay, soft agar colony formation assay, Transwell invasion assay, qRT-PCR, Western blot, etc. Besides, microarray, rescue experiment and Western blot were used to investigate the molecular mechanisms underlying the functions of SIRT5.Results: SIRT5 expression was downregulated in RCC tissues, and low expression of SIRT5 was correlated with poor prognosis of RCC. Knockdown of SIRT5 significantly prompted cell proliferation, migration, and facilitated invasion in vitro. In vivo experiments revealed that knocking down SIRT5 prompted ccRCC tumorigenesis and metastasis. SIRT5 deglycosylated PDHA1 at K351 and increased the activity of PDC, thus changing the metabolic pathway to the TCA cycle and inhibiting the Warburg effect. The overexpression of SIRT5 was related to the low succinylation of PDHA1.Conclusion: SIRT5 correlated with PDHA1 hyposuccinylation and progression in ccRCC, which suggested that SIRT5 might become a potential target for ccRCC therapy.


Author(s):  
Yuanyuan Guo ◽  
Beibei Liu ◽  
Yihan Liu ◽  
Wei Sun ◽  
Wuyue Gao ◽  
...  

ObjectivesThis study aims to investigate the underlying mechanisms of KAT2A/MCT1 axis in renal cell carcinoma (RCC), providing potential therapeutic targets.MethodsWe obtained the expression data of KAT2A and MCT1 from The Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC) and International Cancer Genome Consortium (ICGC) databases. Differential analysis was conducted via the limma package. The CCK8 assay, soft agar assay, clone formation assay, and patients-derived organoid models were used to detect cell growth. The transwell and wound-healing assays were utilized to detect cell migration. The in vitro and in vivo assays were further conducted to assess the oncogenic roles of KAT2A. The transcriptome sequencing and chromatin immunoprecipitation (ChIP) sequencing were conducted to screen KAT2A downstream targets. The dose-effect curves were used to detect the 50% inhibiting concentration (IC50) of AZD3965. Data analysis was performed in the Graphpad Prism (Version 8.3.0) and R software (Version 3.6.1).ResultsOur study found that KAT2A was highly expressed in RCC versus normal samples. Prognostic analysis indicated that a high KAT2A was an independent biomarker and associated with poor survival outcomes. KAT2A could promote RCC proliferation and distal metastasis in vitro and in vivo. Transcriptome analysis and ChIP-seq were combined to find that KAT2A mainly regulated the glycolytic process. Validation and rescue assays revealed that MCT1 was the downstream target of KAT2A, and KAT2A depended on MCT1 to promote RCC malignant phenotypes. Lastly, MCT1 inhibitor (AZD3965) was effective to treat KAT2A-induced RCC progression.ConclusionOur study indicated that KAT2A was an oncogenic chromatin modifier that promotes RCC progression by inducing MCT1 expression. We proposed that MCT1 inhibitor (AZD3965) was useful for suppressing RCC.


2021 ◽  
Author(s):  
Zhuonan Liu ◽  
Tianshui Sun ◽  
Chiyuan Piao ◽  
Zhe Zhang ◽  
Chuize Kong

Abstract Background: Clear cell renal cell carcinoma (ccRCC) is the most common and aggressive type of renal malignancy. Methyltransferase like 13 (METTL13) functions as an oncogene in most of human cancers, but its function and mechanism in ccRCC remain unreported. Methods: qRT-PCR, western blot and immunohistochemistry were used to detect METTL13’s expressions in tissues. The effects of METTL13 on ccRCC cells’ growth and metastasis were determined by both functional experiments and animal experiments. Weighted gene co-expression network analysis (WGCNA) was performed to annotate METTL13’s functions and co-immunoprecipitation (co-IP) was used to determine the interaction between two proteins. Results: METTL13 was lowly expressed in ccRCC tissues compared to normal kidney tissues and its low expression predicted poor prognosis for ccRCC patients. In vitro study indicated METTL13’s inhibition on ccRCC cells’ proliferation, viability, migratory ability and invasiveness as well as epithelial-mesenchymal transition (EMT). Bioinformatic analyses showed various biological functions and pathways METTL13 was involved in. In ccRCC cells, we observed that METTL13 could negatively regulate PI3K/AKT/mTOR/HIF-1α pathway and that it combined to c-Myc and inhibited c-Myc expression. In vivo experiment confirmed that METTL13 inhibited ccRCC cell growth and metastasis. Conclusions: In general, our finding suggests that associated with favorable prognosis of ccRCC patients, METTL13 can inhibit growth and metastasis of ccRCC cells with multiple potential molecular mechanisms. Therefore, it’s likely for METTL13 to serve as a new diagnostic and therapeutic target for ccRCC in the future.


2017 ◽  
Vol 41 (5) ◽  
pp. 1947-1956 ◽  
Author(s):  
Xinchao Wu ◽  
Dong Liu ◽  
Xuemei Gao ◽  
Fei Xie ◽  
Dan Tao ◽  
...  

Background/Aims: Renal cell carcinoma (RCC) remains an intractable genitourinary malignancy. Resistance to chemotherapy or targeted therapies in RCC is presumably due to the complicated underlying molecular mechanisms and insufficient understanding. The aim of this research was to assess the expression and role of bromodomain-4 protein (BRD4) in RCC and evaluate the effects of BRD4 inhibitor JQ1 for RCC treatment. Methods: BRD4 expressionlevels were assessed by qRT-PCR and western blot in RCC tissues and cells. The effects of BRD4 knockdown or JQ1 on RCC cells were assessed by MTT assay and flow cytometry. The effects of in vivo treatment were evaluated through xenograft experiments. Results: BRD4 is significantly overexpressed in RCC, and is related to tumor stage and lymph node metastasis. Inhibition of BRD4 suppressed RCC cell proliferation, induced cell apoptosis in vitro and repressed tumor growth in vivo. Inhibition of BRD4 decreased BCL2 and C-MYC expression while increased BAX and cleaved caspase3 expression, and strikingly diminished the recruitment of BRD4 to BCL2 promoter. Conclusions: Our research reveals that BRD4 probably play a critical role in RCC progression, and is a new promising target for pharmacological treatment directed against this intractable disease.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhuonan Liu ◽  
Tianshui Sun ◽  
Chiyuan Piao ◽  
Zhe Zhang ◽  
Chuize Kong

Abstract Background Clear cell renal cell carcinoma (ccRCC) is the most common and aggressive type of renal malignancy. Methyltransferase like 13 (METTL13) functions as an oncogene in most of human cancers, but its function and mechanism in ccRCC remains unreported. Methods qRT-PCR, western blotting and immunohistochemistry were used to detect METTL13’s expression in tissues. The effects of METTL13 on ccRCC cells’ growth and metastasis were determined by both functional experiments and animal experiments. Weighted gene co-expression network analysis (WGCNA) was performed to annotate METTL13’s functions and co-immunoprecipitation (co-IP) was used to determine the interaction between METTL13 and c-Myc. Results METTL13 was underexpressed in ccRCC tissues compared to normal kidney tissues and its low expression predicted poor prognosis for ccRCC patients. The in vitro studies showed that knockdown and overexpression of METTL13 respectively led to increase and decrease in ccRCC cells’ proliferation, viability, migratory ability and invasiveness as well as epithelial-mesenchymal transition (EMT). The in vivo experiment demonstrated the inhibitory effect that METTL13 had on ccRCC cells’ growth and metastasis. Bioinformatic analyses showed various biological functions and pathways METTL13 was involved in. In ccRCC cells, we observed that METTL13 could negatively regulate PI3K/AKT/mTOR/HIF-1α pathway and that it combined to c-Myc and inhibited c-Myc protein expression. Conclusions In general, our finding suggests that high expression of METTL13 is associated with favorable prognosis of ccRCC patients. Meanwhile, METTL13 can inhibit growth and metastasis of ccRCC cells with participation in multiple potential molecular mechanisms. Therefore, we suggest METTL13 can be a new diagnostic and therapeutic target for ccRCC in the future.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Junjie Cen ◽  
Yanping Liang ◽  
Yong Huang ◽  
Yihui Pan ◽  
Guannan Shu ◽  
...  

Abstract Background There is increasing evidence that circular RNAs (circRNAs) have significant regulatory roles in cancer development and progression; however, the expression patterns and biological functions of circRNAs in renal cell carcinoma (RCC) remain largely elusive. Method Bioinformatics methods were applied to screen for circRNAs differentially expressed in RCC. Analysis of online circRNAs microarray datasets and our own patient cohort indicated that circSDHC (hsa_circ_0015004) had a potential oncogenic role in RCC. Subsequently, circSDHC expression was measured in RCC tissues and cell lines by qPCR assay, and the prognostic value of circSDHC evaluated. Further, a series of functional in vitro and in vivo experiments were conducted to assess the effects of circSDHC on RCC proliferation and metastasis. RNA pull-down assay, luciferase reporter and fluorescent in situ hybridization assays were used to confirm the interactions between circSDHC, miR-127-3p and its target genes. Results Clinically, high circSDHC expression was correlated with advanced TNM stage and poor survival in patients with RCC. Further, circSDHC promoted tumor cell proliferation and invasion, both in vivo and in vitro. Analysis of the mechanism underlying the effects of circSDHC in RCC demonstrated that it binds competitively to miR-127-3p and prevents its suppression of a downstream gene, CDKN3, and the E2F1 pathway, thereby leading to RCC malignant progression. Furthermore, knockdown of circSDHC caused decreased CDKN3 expression and E2F1 pathway inhibition, which could be rescued by treatment with an miR-127-3p inhibitor. Conclusion Our data indicates, for the first time, an essential role for the circSDHC/miR-127-3p/CDKN3/E2F1 axis in RCC progression. Thus, circSDHC has potential to be a new therapeutic target in patients with RCC.


2017 ◽  
Vol 16 (5) ◽  
pp. 7048-7055 ◽  
Author(s):  
Yanli Li ◽  
Da Zhang ◽  
Jiaxiang Wang

Urology ◽  
2018 ◽  
Vol 113 ◽  
pp. 129-137 ◽  
Author(s):  
Ga Eun Kim ◽  
Ae Ryang Jung ◽  
Mee Young Kim ◽  
Joseph Bada Lee ◽  
Ji Houn Im ◽  
...  

2020 ◽  
Vol 10 ◽  
Author(s):  
Xiang Ju ◽  
Yangyang Sun ◽  
Feng Zhang ◽  
Xiaohui Wei ◽  
Zhenguo Wang ◽  
...  

With the rapid development of biotechnology, long noncoding RNAs (lncRNAs) have exhibited good application prospects in the treatment of cancer, and they may become new treatment targets for cancer. This study aimed to explore lncRNAs in clear cell renal cell carcinoma (ccRCC). Differentially expressed lncRNAs in 54 pairs of ccRCC tissues and para-carcinoma tissues were analyzed in The Cancer Genome Atlas (TCGA), and the most significant lncRNAs were selected and verified in ccRCC tissues. We found that lncRNA LINC02747 was highly expressed in ccRCC (P < 0.001) and was closely related to high TNM stage (P = 0.006) and histological grade (P = 0.004) and poor prognosis of patients (P < 0.001). In vivo and in vitro experiments confirmed that LINC02747 could promote the proliferation of ccRCC cells. We also found that LINC02747 regulated the proliferation of RCC cells by adsorbing miR-608. Subsequent mechanistic research showed that miR-608 is downregulated in ccRCC (P < 0.001), and overexpression of miR-608 inbibited the proliferation of RCC cells. Moreover, we found that TFE3 is a direct target gene of miR-608. MiR-608 regulated the proliferation of RCC cells by inhibiting TFE3. In conclusion, LINC02747 upregulates the expression of TFE3 by adsorbing miR-608, ultimately promoting the proliferation of ccRCC cells. The above findings indicate that LINC02747 acts as an oncogene in ccRCC and may be developed as a molecular marker for the diagnosis and prognosis of ccRCC. The LINC02747/miR-608/TFE3 pathway may become a new therapeutic target for ccRCC.


Sign in / Sign up

Export Citation Format

Share Document