scholarly journals The E3 Ligase PIAS1 Regulates p53 Sumoylation to Control Stress-Induced Apoptosis of Lens Epithelial Cells Through the Proapoptotic Regulator Bax

Author(s):  
Qian Nie ◽  
Huimin Chen ◽  
Ming Zou ◽  
Ling Wang ◽  
Min Hou ◽  
...  

Protein sumoylation is one of the most important post-translational modifications regulating many biological processes (Flotho A & Melchior F. 2013. Ann Rev. Biochem. 82:357–85). Our previous studies have shown that sumoylation plays a fundamental role in regulating lens differentiation (Yan et al., 2010. PNAS, 107(49):21034-9.; Gong et al., 2014. PNAS. 111(15):5574–9). Whether sumoylation is implicated in lens pathogenesis remains elusive. Here, we present evidence to show that the protein inhibitor of activated STAT-1 (PIAS1), a E3 ligase for sumoylation, is implicated in regulating stress-induced lens pathogenesis. During oxidative stress-induced cataractogenesis, expression of PIAS1 is significantly altered at both mRNA and protein levels. Upregulation and overexpression of exogenous PIAS1 significantly enhances stress-induced apoptosis. In contrast, silence of PIAS1 with CRISPR/Cas9 technology attenuates stress-induced apoptosis. Mechanistically, different from other cells, PIAS1 has little effect to activate JNK but upregulates Bax, a major proapoptotic regulator. Moreover, Bax upregulation is derived from the enhanced transcription activity of the upstream transcription factor, p53. As revealed previously in other cells by different laboratories, our data also demonstrate that PIAS1 promotes SUMO1 conjugation of p53 at K386 residue in lens epithelial cells and thus enhances p53 transcription activity to promote Bax upregulation. Silence of Bax expression largely abrogates PIAS1-mediated enhancement of stress-induced apoptosis. Thus, our results demonstrated that PIAS1 promotes oxidative stress-induced apoptosis through positive control of p53, which specifically upregulates expression of the downstream proapoptotic regulator Bax. As a result, PIAS1-promoted apoptosis induced by oxidative stress is implicated in lens pathogenesis.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Jiao Peng ◽  
Ting-ting Zheng ◽  
Yue Liang ◽  
Li-fang Duan ◽  
Yao-dong Zhang ◽  
...  

To protect against oxidative stress-induced apoptosis in lens epithelial cells is a potential strategy in preventing cataract formation. The present study aimed at studying the protective effect and underlying mechanisms of p-coumaric acid (p-CA) on hydrogen peroxide- (H2O2-) induced apoptosis in human lens epithelial (HLE) cells (SRA 01–04). Cells were pretreated with p-CA at a concentration of 3, 10, and 30 μM before the treatment of H2O2 (275 μM). Results showed that pretreatment with p-CA significantly protected against H2O2-induced cell death in a dose-dependent manner, as well as downregulating the expressions of both cleaved caspase-3 and cleaved caspase-9 in HLE cells. Moreover, p-CA also greatly suppressed H2O2-induced intracellular ROS production and mitochondrial membrane potential loss and elevated the activities of T-SOD, CAT, and GSH-Px of H2O2-treated cells. As well, in vitro study showed that p-CA also suppressed H2O2-induced phosphorylation of p-38, ERK, and JNK in HLE cells. These findings demonstrate that p-CA suppresses H2O2-induced HLE cell apoptosis through modulating MAPK signaling pathways and suggest that p-CA has a potential therapeutic role in the prevention of cataract.


2008 ◽  
Vol 294 (3) ◽  
pp. C842-C855 ◽  
Author(s):  
Eri Kubo ◽  
Nigar Fatma ◽  
Yoshio Akagi ◽  
David R. Beier ◽  
Sanjay P. Singh ◽  
...  

A diminished level of endogenous antioxidant in cells/tissues is associated with reduced resistance to oxidative stress. Peroxiredoxin 6 (PRDX6), a protective molecule, regulates gene expression/function by controlling reactive oxygen species (ROS) levels. Using PRDX6 protein linked to TAT, the transduction domain from human immunodeficiency virus type 1 TAT protein, we demonstrated that PRDX6 was transduced into lens epithelial cells derived from rat or mouse lenses. The protein was biologically active, negatively regulating apoptosis and delaying progression of cataractogenesis by attenuating deleterious signaling. Lens epithelial cells from cataractous lenses bore elevated levels of ROS and were susceptible to oxidative stress. These cells harbored increased levels of active transforming growth factor (TGF)-β1 and of α-smooth muscle actin and βig-h3, markers for cataractogenesis. Importantly, cataractous lenses showed a 10-fold reduction in PRDX6 expression, whereas TGF-β1 mRNA and protein levels were elevated. The changes were reversed, and cataractogenesis was delayed when PRDX6 was supplied. Results suggest that delivery of PRDX6 can postpone cataractogenesis, and this should be an effective approach to delaying cataracts and other degenerative diseases that are associated with increased ROS.


2019 ◽  
Vol 63 (2) ◽  
pp. 174-181 ◽  
Author(s):  
Yuanyuan Zou ◽  
Bingjie Cui ◽  
Pei Liang ◽  
Xiaoyu Tian ◽  
Yiming Ma ◽  
...  

Pharmacology ◽  
2018 ◽  
Vol 102 (3-4) ◽  
pp. 213-222 ◽  
Author(s):  
Xiu-li Gu

Aim: To investigate the regulation of microRNA-124 ­(miRNA-124) on NF-κB pathway from H2O2-induced apoptosis and oxidative stress in human lens epithelial cells (hLEC). Methods: The MTT (3-[4, 5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to detect hLEC ­viability. HLECs were divided into Blank, H2O2, mimics (miRNA-124 mimics) + H2O2, NC+ H2O2, pyrrolidine dithiocarbamate (PDTC; NF-κB signaling pathway inhibitor) + H2O2, and inhibitors (miRNA-124 inhibitors) + PDTC + H2O2 groups. Quantitative real-time polymerase chain reaction and Western blot were employed to detect mRNA and protein expressions, Dichloro-dihydro-fluorescein diacetate to measure reactive oxygen species (ROS) production, and AnnexinV-FITC/PI staining to determine cell apoptosis. The mitochondrial membrane potential (MMP) was detected by fluorescence probe JC-1. Results: The H2O2-induced hLEC showed reductions in cell viability with decreased miRNA-124 but increased p-p65 in a dose-/time-dependent manner. Furthermore, ROS production, malondialdehyde content, Bax and Caspase-3 expressions, and cell apoptosis were elevated in H2O2-induced hLEC, whereas the activities of superoxide dismutase and glutathione peroxidase, Bcl-2 expression, MMP, as well as the mitochondrial energy metabolism genes were reduced. Additionally, miRNA-124 mimics and PDTC both decreased the p-p65 and reversed the cytotoxicity in H2O2-induced hLEC. Conclusion: MiRNA-124 prevents H2O2-induced oxidative stress and apoptosis in hLEC through suppressing the activation of the NF-κB pathway.


Sign in / Sign up

Export Citation Format

Share Document