scholarly journals Insights Into Dendritic Cells in Cancer Immunotherapy: From Bench to Clinical Applications

Author(s):  
Ahmed Salah ◽  
Hao Wang ◽  
Yanqin Li ◽  
Meng Ji ◽  
Wen-Bin Ou ◽  
...  

Dendritic cells (DCs) are efficient antigen-presenting cells (APCs) and potent activators of naïve T cells. Therefore, they act as a connective ring between innate and adaptive immunity. DC subsets are heterogeneous in their ontogeny and functions. They have proven to potentially take up and process tumor-associated antigens (TAAs). In this regard, researchers have developed strategies such as genetically engineered or TAA-pulsed DC vaccines; these manipulated DCs have shown significant outcomes in clinical and preclinical models. Here, we review DC classification and address how DCs are skewed into an immunosuppressive phenotype in cancer patients. Additionally, we present the advancements in DCs as a platform for cancer immunotherapy, emphasizing the technologies used for in vivo targeting of endogenous DCs, ex vivo generated vaccines from peripheral blood monocytes, and induced pluripotent stem cell-derived DCs (iPSC-DCs) to boost antitumoral immunity.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Farzaneh Rami ◽  
Halimeh Mollainezhad ◽  
Mansoor Salehi

The immune system consists of cells, proteins, and other molecules that beside each other have a protective function for the host against foreign pathogens. One of the most essential features of the immune system is distinguishability between self- and non-self-cells. This function has an important role in limiting development and progression of cancer cells. In this case, the immune system can detect tumor cell as a foreign pathogen; so, it can be effective in elimination of tumors in their early phases of development. This ability of the immune system resulted in the development of a novel therapeutic field for cancer treatment using host immune components which is called cancer immunotherapy. The main purpose of cancer immunotherapy is stimulation of a strong immune response against the tumor cells that can result from expressing either the immune activator cytokines in the tumor area or gene-modified immune cells. Because of the problems of culturing and manipulating immune cells ex vivo, in recent years, embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) have been used as new sources for generation of modified immune stimulatory cells. In this paper, we reviewed some of the progressions in iPSC technology for cancer immunotherapy.


2021 ◽  
Author(s):  
Ratna Varma ◽  
Alba E Marin-Araujo ◽  
Sara Rostami ◽  
Thomas K Waddell ◽  
Golnaz Karoubi ◽  
...  

Airway pathologies including cancer, trauma and stenosis lack effective treatments, meanwhile airway transplantation and available tissue engineering approaches fail due to epithelial dysfunction. Autologous progenitors do not meet the clinical need for regeneration due to their insufficient expansion and differentiation, for which human induced pluripotent stem cells (hiPSCs) are promising alternatives. Airway epithelial grafts are engineered by differentiating hiPSC-derived airway progenitors into physiological proportions of ciliated (73.9+/-5.5%) and goblet (2.1 +/-1.4%) cells on a Silk Fibroin-Collagen Vitrigel Membrane (SF-CVM) composite biomaterial for transplantation in porcine tracheal defects ex vivo and in vivo. Evaluation of ex vivo tracheal repair using hiPSC-derived SF-CVM grafts demonstrate native-like tracheal epithelial metabolism and maintenance of mucociliary epithelium to day 3. In vivo studies reveal SF-CVM integration, maintenance of airway patency, showing 80.8+/-3.6% graft coverage with an hiPSC-derived pseudostratified epithelium and 70.7+/-2.3% coverage with viable cells, 3 days post-operatively. We demonstrate the utility of bioengineered, hiPSC-derived epithelial grafts for airway repair in a pre-clinical survival model, providing a significant leap for airway reconstruction approaches.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 617
Author(s):  
Caterina Lapenta ◽  
Lucia Gabriele ◽  
Stefano Maria Santini

The past decade has seen tremendous developments in novel cancer therapies through targeting immune-checkpoint molecules. However, since increasing the presentation of tumor antigens remains one of the major issues for eliciting a strong antitumor immune response, dendritic cells (DC) still hold a great potential for the development of cancer immunotherapy. A considerable body of evidence clearly demonstrates the importance of the interactions of type I IFN with the immune system for the generation of a durable antitumor response through its effects on DC. Actually, highly active DC can be rapidly generated from blood monocytes in vitro in the presence of IFN-α (IFN-DC), suitable for therapeutic vaccination of cancer patients. Here we review how type I IFN can promote the ex vivo differentiation of human DC and orientate DC functions towards the priming and expansion of protective antitumor immune responses. New epigenetic elements of control on activation of the type I IFN signal will be highlighted. We also review a few clinical trials exploiting IFN-DC in cancer vaccination and discuss how IFN-DC could be exploited for the design of effective strategies of cancer immunotherapy as a monotherapy or in combination with immune-checkpoint inhibitors or immunomodulatory drugs.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 590 ◽  
Author(s):  
Alexey V. Baldin ◽  
Lyudmila V. Savvateeva ◽  
Alexandr V. Bazhin ◽  
Andrey A. Zamyatnin

Dendritic cells (DCs) have shown great potential as a component or target in the landscape of cancer immunotherapy. Different in vivo and ex vivo strategies of DC vaccine generation with different outcomes have been proposed. Numerous clinical trials have demonstrated their efficacy and safety in cancer patients. However, there is no consensus regarding which DC-based vaccine generation method is preferable. A problem of result comparison between trials in which different DC-loading or -targeting approaches have been applied remains. The employment of different DC generation and maturation methods, antigens and administration routes from trial to trial also limits the objective comparison of DC vaccines. In the present review, we discuss different methods of DC vaccine generation. We conclude that standardized trial designs, treatment settings and outcome assessment criteria will help to determine which DC vaccine generation approach should be applied in certain cancer cases. This will result in a reduction in alternatives in the selection of preferable DC-based vaccine tactics in patient. Moreover, it has become clear that the application of a DC vaccine alone is not sufficient and combination immunotherapy with recent advances, such as immune checkpoint inhibitors, should be employed to achieve a better clinical response and outcome.


2019 ◽  
Author(s):  
Danny El-Nachef ◽  
Darrian Bugg ◽  
Kevin M. Beussman ◽  
Amy M. Martinson ◽  
Charles E. Murry ◽  
...  

AbstractPreclinical studies have suggested that transplanted human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) grafts expand due to proliferation. This knowledge came from cell cycle activity measurements that cannot discriminate between cytokinesis or DNA synthesis associated with hypertrophy. To refine our understanding of hPSC-CM cell therapy, we genetically engineered a cardiomyocyte-specific fluorescent barcoding system into an hPSC line. Since cellular progeny have the same color as parental hPSC-CMs, we could identify subsets of engrafted hPSC-CMs that clonally expanded, with the remainder being non-proliferative and hypertrophic.


2002 ◽  
Vol 70 (3) ◽  
pp. 1097-1105 ◽  
Author(s):  
Jennifer Shaw ◽  
Vernon Grund ◽  
Luke Durling ◽  
Debbie Crane ◽  
Harlan D. Caldwell

ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that infects the oculogenital mucosae. C. trachomatis infection of the eye causes trachoma, the leading cause of preventable blindness. Infections of the genital mucosae are a leading cause of sexually transmitted diseases. A vaccine to prevent chlamydial infection is needed but has proven difficult to produce by using conventional vaccination approaches. Potent immunity to vaginal rechallenge in a murine model of chlamydial genital infection has been achieved only by infection or by immunization with dendritic cells (DC) pulsed ex vivo with whole inactivated organisms. Immunity generated by infection or ex vivo antigen-pulsed DC correlates with a chlamydia-specific interleukin 12 (IL-12)-dependent CD4+ Th1 immune response. Because of the potent antichlamydial immunizing properties of DC, we hypothesized that DC could be a powerful vehicle for the delivery of individual chlamydial antigens that are thought to be targets for more conventional vaccine approaches. Here, we investigated the recombinant chlamydial major outer membrane protein (rMOMP) as a target antigen. The results demonstrate that DC pulsed with rMOMP secrete IL-12 and stimulate infection-sensitized CD4+ T cells to proliferate and secrete gamma interferon. These immunological properties implied that rMOMP-pulsed DC would be potent inducers of MOMP-specific CD4+ Th1 immunity in vivo; however, we observed the opposite result. DC pulsed ex vivo with rMOMP and adoptively transferred to naive mice generated a Th2 rather than a Th1 anti-MOMP immune response, and immunized mice were not protected following infectious challenge. We conclude from these studies that the immunological properties of ex vivo pulsed DC are not necessarily predictive of the immune response generated in vivo following adoptive transfer. These findings suggest that the nature of the antigen used to pulse DC ex vivo influences the Th1-Th2 balance of the immune response in vivo.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-6-SCI-6 ◽  
Author(s):  
Koji Eto

Platelet transfusion is necessary for patients in thrombocytopenic states. Due to short shelf life of platelet product, the shortage of blood donors in the younger population as the consequence of aging societies in developed countries and platelet transfusion refractoriness (PTR) caused by alloimmune response, the risk of platelet product shortage has been a concern. Therefore, many attempts to substitute donor-dependent platelet product have been proposed. Induced pluripotent stem cell (iPSC) derived-platelet like particle product (which we refer as iPS-platelets) is aimed to provide measures against alloimmune PTR as well as to complement the current blood donor-dependent system.To generate the huge number of platelets required for transfusion into thrombocytopenia patients (200-300 billion per transfusion) ex vivo, megakaryopoiesis and subsequent platelet biogenesis process from megakaryocytes needed to be both substantially elucidated in mechanical systems. For the former, our key measure is to expand the immortalized megakaryocyte cell lines (imMKCLs) derived from iPSCs, whereby c-MYC, BMI-1, and Bcl-XL are overexpressed under doxycycline-inducible system to regulate proliferation of megakaryocyte progenitors (Cell Stem Cell, 2014). For the latter, in vivovisualization of mouse bone marrow revealed the presence of turbulence adjacent to megakaryocytes actively releasing platelets, which prompted us to utilize a unique turbulent flow-incorporated bioreactor to produce iPS-platelets. Furthermore, we succeeded in identifying turbulent energy and shear stress as essential physical parameters and further determined the optimal values, thereby to enable efficient and intact ex vivoplatelet manufacture, as exemplified by lowered Annexin V binding values in iPS-platelets, comparable with donor-human platelets. Simultaneously, we developed a culture medium cocktail including a thrombopoietin (TPO) mimetic small compound, an ADAM10/17 inhibitor for the maintenance of GPIb-alpha expression on platelets, an arylhydrocarbon receptor inhibitor, and a ROCK inhibitor for feeder cell-independent megakaryocyte maturation (Stem Cells Transl Med, 2017; Blood Adv, 2017; Blood Adv, 2018). By scaling up of the bioreactor, 100 billion iPS-platelets were produced in 8 L scale. In vitro and in vivo evaluation of iPS-platelets showed the functionality comparable with blood donor-derived platelets (Cell, 2018), including the newly developed thrombocytopenia rabbit model (Transfusion, 2017). Meanwhile, an iPS cell-derived human leukocyte antigen (HLA) class-I-null imMKCL as a universal HLA platelet source is potentially the best solution for alloimmune PTR. However, the immunogenic properties are still unclear, especially regarding natural killer (NK) cells that attack HLA-downregulated cells. Therefore, we evaluated the immunological reaction between HLA-null platelets and NK cells by using our newly developed alloimmune PTR in vivo model in which human NK cells are highly reconstituted in MISTRG mice (Suzuki and Sugimoto et al.,manuscript in revision). This pre-clinical study model should provide a proof-of concept for the clinical application of HLA-null iPS-platelets as a universal platelet product for future transfusion. References Nakamura S, et al. Expandable Megakaryocyte Cell Lines Enable Clinically Applicable Generation of Platelets from Human Induced Pluripotent Stem Cells. Cell Stem Cell. 2014, 14, 535-548.Hirata S, et al. Selective Inhibition of ADAM17 Efficiently Mediates Glycoprotein IbαRetention During Ex Vivo Generation of Human Induced Pluripotent Stem Cell-Derived Platelets. Stem Cells Transl Med. 2017, 6, 720-730.Aihara A, et al. Novel TPO receptor agonist TA-316 contributes to platelet biogenesis from human iPS cells. Blood Adv. 2017, 1, 468-476.Seo H, Chen SJ, et al. A β1-tubulin-based megakaryocyte maturation reporter system identifies novel drugs that promote platelet production. Blood Adv. 2018, 2, 2262-2272.Ito Y, Nakamura S, et al. Turbulence Activates Platelet Biogenesis to Enable Clinical Scale Ex Vivo Production. Cell. 2018, 174, 636-648.Watanabe N, et al. Refined methods to evaluate the in vivo hemostatic function and viability of transfused human platelets in rabbit models. Transfusion. 2017, 57, 2035-2044. Disclosures Eto: Megakaryon Co. Ltd.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. OffLabel Disclosure: Our published results that include some drugs, i.e., TA-316 (Blood Advances, 1(7):468-476, 2017), KP457 (Stem Cells Transl Med, 6(3):720-730, 2017), and SR1 (Cell, 174(3):636-648, 2018)


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriel Peinkofer ◽  
Martina Maass ◽  
Kurt Pfannkuche ◽  
Agapios Sachinidis ◽  
Stephan Baldus ◽  
...  

Abstract Background Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) are regarded as promising cell type for cardiac cell replacement therapy, but it is not known whether the developmental stage influences their persistence and functional integration in the host tissue, which are crucial for a long-term therapeutic benefit. To investigate this, we first tested the cell adhesion capability of murine iPSC-CM in vitro at three different time points during the differentiation process and then examined cell persistence and quality of electrical integration in the infarcted myocardium in vivo. Methods To test cell adhesion capabilities in vitro, iPSC-CM were seeded on fibronectin-coated cell culture dishes and decellularized ventricular extracellular matrix (ECM) scaffolds. After fixed periods of time, stably attached cells were quantified. For in vivo experiments, murine iPSC-CM expressing enhanced green fluorescent protein was injected into infarcted hearts of adult mice. After 6–7 days, viable ventricular tissue slices were prepared to enable action potential (AP) recordings in transplanted iPSC-CM and surrounding host cardiomyocytes. Afterwards, slices were lysed, and genomic DNA was prepared, which was then used for quantitative real-time PCR to evaluate grafted iPSC-CM count. Results The in vitro results indicated differences in cell adhesion capabilities between day 14, day 16, and day 18 iPSC-CM with day 14 iPSC-CM showing the largest number of attached cells on ECM scaffolds. After intramyocardial injection, day 14 iPSC-CM showed a significant higher cell count compared to day 16 iPSC-CM. AP measurements revealed no significant difference in the quality of electrical integration and only minor differences in AP properties between d14 and d16 iPSC-CM. Conclusion The results of the present study demonstrate that the developmental stage at the time of transplantation is crucial for the persistence of transplanted iPSC-CM. iPSC-CM at day 14 of differentiation showed the highest persistence after transplantation in vivo, which may be explained by a higher capability to adhere to the extracellular matrix.


Sign in / Sign up

Export Citation Format

Share Document