scholarly journals IFN-Alpha-Mediated Differentiation of Dendritic Cells for Cancer Immunotherapy: Advances and Perspectives

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 617
Author(s):  
Caterina Lapenta ◽  
Lucia Gabriele ◽  
Stefano Maria Santini

The past decade has seen tremendous developments in novel cancer therapies through targeting immune-checkpoint molecules. However, since increasing the presentation of tumor antigens remains one of the major issues for eliciting a strong antitumor immune response, dendritic cells (DC) still hold a great potential for the development of cancer immunotherapy. A considerable body of evidence clearly demonstrates the importance of the interactions of type I IFN with the immune system for the generation of a durable antitumor response through its effects on DC. Actually, highly active DC can be rapidly generated from blood monocytes in vitro in the presence of IFN-α (IFN-DC), suitable for therapeutic vaccination of cancer patients. Here we review how type I IFN can promote the ex vivo differentiation of human DC and orientate DC functions towards the priming and expansion of protective antitumor immune responses. New epigenetic elements of control on activation of the type I IFN signal will be highlighted. We also review a few clinical trials exploiting IFN-DC in cancer vaccination and discuss how IFN-DC could be exploited for the design of effective strategies of cancer immunotherapy as a monotherapy or in combination with immune-checkpoint inhibitors or immunomodulatory drugs.

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1145 ◽  
Author(s):  
Shuvashis Dey ◽  
Matt Trau ◽  
Kevin M. Koo

Cancer immunotherapy encompasses a variety of approaches which target or use a patient’s immune system components to eliminate cancer. Notably, the current use of immune checkpoint inhibitors to target immune checkpoint receptors such as CTLA-4 or PD-1 has led to remarkable treatment responses in a variety of cancers. To predict cancer patients’ immunotherapy responses effectively and efficiently, multiplexed immunoassays have been shown to be advantageous in sensing multiple immunomarkers of the tumor microenvironment simultaneously for patient stratification. Surface-enhanced Raman spectroscopy (SERS) is well-regarded for its capabilities in multiplexed bioassays and has been increasingly demonstrated in cancer immunotherapy applications in recent years. This review focuses on SERS-active nanomaterials in the modern literature which have shown promise for enabling cancer patient-tailored immunotherapies, including multiplexed in vitro and in vivo immunomarker sensing and imaging, as well as immunotherapy drug screening and delivery.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3263-3271 ◽  
Author(s):  
Maria Montoya ◽  
Giovanna Schiavoni ◽  
Fabrizio Mattei ◽  
Ion Gresser ◽  
Filippo Belardelli ◽  
...  

Abstract Resting dendritic cells (DCs) are resident in most tissues and can be activated by environmental stimuli to mature into potent antigen-presenting cells. One important stimulus for DC activation is infection; DCs can be triggered through receptors that recognize microbial components directly or by contact with infection-induced cytokines. We show here that murine DCs undergo phenotypic maturation upon exposure to type I interferons (type I IFNs) in vivo or in vitro. Moreover, DCs either derived from bone marrow cells in vitro or isolated from the spleens of normal animals express IFN-α and IFN-β, suggesting that type I IFNs can act in an autocrine manner to activate DCs. Consistent with this idea, the ability to respond to type I IFN was required for the generation of fully activated DCs from bone marrow precursors, as DCs derived from the bone marrow of mice lacking a functional receptor for type I IFN had reduced expression of costimulatory and adhesion molecules and a diminished ability to stimulate naive T-cell proliferation compared with DCs derived from control bone marrow. Furthermore, the addition of neutralizing anti–IFN-α/β antibody to purified splenic DCs in vitro partially blocked the “spontaneous” activation of these cells, inhibiting the up-regulation of costimulatory molecules, secretion of IFN-γ, and T-cell stimulatory activity. These results show that DCs both secrete and respond to type I IFN, identifying type I interferons as autocrine DC activators.


2011 ◽  
Vol 286 (41) ◽  
pp. 35329-35333 ◽  
Author(s):  
Elena Riboldi ◽  
Roberta Daniele ◽  
Carmen Parola ◽  
Antonio Inforzato ◽  
Phoebe L. Arnold ◽  
...  

Plasmacytoid dendritic cells are specialized in the production of type I interferon (type I IFN), which promotes antiviral and antitumor responses, as well as autoimmune disorders. Activation of type I IFN secretion depends on the pattern recognition receptors TLR7 and TLR9, which sense microbial RNA and DNA, respectively. Type I IFN production is modulated by several receptors, including the type II C-type lectin domain family 4, member C (CLEC4C). The natural ligand of CLEC4C is unknown. To identify it, here we probed a glycan array with a soluble form of the CLEC4C ectodomain. We found that CLEC4C recognizes complex type sugars with terminal galactose. Importantly, soluble CLEC4C bound peripheral blood leukocytes and tumor cells that express glycans with galactose residues at the non-reducing ends. The positive and negative modulation of galactose residues on cell membranes was paralleled by the regulation of type I IFN secretion by plasmacytoid dendritic cells in co-culture experiments in vitro. These results suggest that the modulation in the expression of non-sialylated oligosaccharides by invading pathogens or transformed cells may affect type I IFN response and immune surveillance.


2020 ◽  
Vol 21 (18) ◽  
pp. 6478
Author(s):  
Daniel T. Doty ◽  
Julia Schueler ◽  
Vienna L. Mott ◽  
Cassie M. Bryan ◽  
Nathan F. Moore ◽  
...  

The immune checkpoint blockade represents a revolution in cancer therapy, with the potential to increase survival for many patients for whom current treatments are not effective. However, response rates to current immune checkpoint inhibitors vary widely between patients and different types of cancer, and the mechanisms underlying these varied responses are poorly understood. Insights into the antitumor activities of checkpoint inhibitors are often obtained using syngeneic mouse models, which provide an in vivo preclinical basis for predicting efficacy in human clinical trials. Efforts to establish in vitro syngeneic mouse equivalents, which could increase throughput and permit real-time evaluation of lymphocyte infiltration and tumor killing, have been hampered by difficulties in recapitulating the tumor microenvironment in laboratory systems. Here, we describe a multiplex in vitro system that overcomes many of the deficiencies seen in current static histocultures, which we applied to the evaluation of checkpoint blockade in tumors derived from syngeneic mouse models. Our system enables both precision-controlled perfusion across biopsied tumor fragments and the introduction of checkpoint-inhibited tumor-infiltrating lymphocytes in a single experiment. Through real-time high-resolution confocal imaging and analytics, we demonstrated excellent correlations between in vivo syngeneic mouse and in vitro tumor biopsy responses to checkpoint inhibitors, suggesting the use of this platform for higher throughput evaluation of checkpoint efficacy as a tool for drug development.


2010 ◽  
Vol 84 (10) ◽  
pp. 4866-4877 ◽  
Author(s):  
Kapil Bahl ◽  
Anette Hüebner ◽  
Roger J. Davis ◽  
Raymond M. Welsh

ABSTRACT Profound type I interferon (IFN-I)-dependent attrition of memory CD8 and CD4 T cells occurs early during many infections. It is dramatic at 2 to 4 days following lymphocytic choriomeningitis virus (LCMV) infection of mice and can be elicited by the IFN-inducing Toll receptor agonist poly(I:C). We show that this attrition occurs in many organs, indicating that it is due to T cell loss rather than redistribution. This loss correlated with elevated intracellular staining of T cells ex vivo for activated caspases but with only low levels of ex vivo staining with annexin V, probably due to the rapid clearance of apoptotic cells in vivo. Instead, a high frequency of annexin V-reactive CD8α+ dendritic cells (DCs), which are known to be highly phagocytic, accumulated in the spleen as the memory T cell populations disappeared. After short in vitro incubation, memory phenotype T cells isolated from LCMV-infected mice (day 3) or mice treated with poly(I:C) (12 h) displayed substantial DNA fragmentation, as detected by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, compared to T cells isolated from uninfected mice, indicating a role for apoptosis in the memory T cell attrition. This apoptosis of memory CD8 T cells early during LCMV infection was reduced in mice lacking the proapoptotic molecule Bim. Evidence is presented showing that high levels of T cell attrition, as found in young mice, correlate with reduced immunodomination by cross-reactive memory cells.


Author(s):  
Ahmed Salah ◽  
Hao Wang ◽  
Yanqin Li ◽  
Meng Ji ◽  
Wen-Bin Ou ◽  
...  

Dendritic cells (DCs) are efficient antigen-presenting cells (APCs) and potent activators of naïve T cells. Therefore, they act as a connective ring between innate and adaptive immunity. DC subsets are heterogeneous in their ontogeny and functions. They have proven to potentially take up and process tumor-associated antigens (TAAs). In this regard, researchers have developed strategies such as genetically engineered or TAA-pulsed DC vaccines; these manipulated DCs have shown significant outcomes in clinical and preclinical models. Here, we review DC classification and address how DCs are skewed into an immunosuppressive phenotype in cancer patients. Additionally, we present the advancements in DCs as a platform for cancer immunotherapy, emphasizing the technologies used for in vivo targeting of endogenous DCs, ex vivo generated vaccines from peripheral blood monocytes, and induced pluripotent stem cell-derived DCs (iPSC-DCs) to boost antitumoral immunity.


2004 ◽  
Vol 199 (4) ◽  
pp. 567-579 ◽  
Author(s):  
Mariolina Salio ◽  
Michael J. Palmowski ◽  
Ann Atzberger ◽  
Ian F. Hermans ◽  
Vincenzo Cerundolo

Plasmacytoid dendritic cells (PDCs) are a unique leukocyte population capable of secreting high levels of type I interferon (IFN) in response to viruses and bacterial stimuli. In vitro experiments have shown that upon maturation, human and murine PDCs develop into potent immunostimulatory cells; however, their ability to prime an immune response in vivo remains to be addressed. We report that CpG-matured murine PDCs are capable of eliciting in naive mice antigen-specific CTLs against endogenous antigens as well as exogenous peptides, but not against an exogenous antigen. Type I IFN is not required for priming, as injection of CpG-matured PDCs into type I IFN receptor–deficient mice elicits functional CTL responses. Mature PDCs prime CTLs that secrete IFN-γ and protect mice from a tumor challenge. In contrast, immature PDCs are unable to prime antigen-specific CTLs. However, mice injected with immature PDCs are fully responsive to secondary antigenic challenges, suggesting that PDCs have not induced long-lasting tolerance via anergic or regulatory T cells. Our results underline the heterogeneity and plasticity of different antigen-presenting cells, and reveal an important role of mature PDCs in priming CD8 responses to endogenous antigens, in addition to their previously reported ability to modulate antiviral responses via type I IFN.


2015 ◽  
Vol 89 (19) ◽  
pp. 9886-9895 ◽  
Author(s):  
Julia Katharina Holzki ◽  
Franziska Dağ ◽  
Iryna Dekhtiarenko ◽  
Ulfert Rand ◽  
Rosaely Casalegno-Garduño ◽  
...  

ABSTRACTCytomegalovirus (CMV) is a ubiquitous beta-herpesvirus whose reactivation from latency is a major cause of morbidity and mortality in immunocompromised hosts. Mouse CMV (MCMV) is a well-established model virus to study virus-host interactions. We showed in this study that the CD8-independent antiviral function of myeloid dendritic cells (mDC) is biologically relevant for the inhibition of MCMV replicationin vivoandin vitro. In vivoablation of CD11c+DC resulted in higher viral titers and increased susceptibility to MCMV infection in the first 3 days postinfection. We developedin vitrococulture systems in which we cocultivated MCMV-infected endothelial cells or fibroblasts with T cell subsets and/or dendritic cells. While CD8 T cells failed to control MCMV replication, bone marrow-derived mDC reduced viral titers by a factor of up to 10,000. Contact of mDC with the infected endothelial cells was crucial for their antiviral activity. Soluble factors secreted by the mDC blocked MCMV replication at the level of immediate early (IE) gene expression, yet the viral lytic cycle reinitiated once the mDC were removed from the cells. On the other hand, the mDC did not impair MCMV replication in cells deficient for the interferon (IFN) alpha/beta receptor (IFNAR), arguing that type I interferons were critical for viral control by mDC. In light of our recent observation that type I IFN is sufficient for the induction of latency immediately upon infection, our results imply that IFN secreted by mDC may play an important role in the establishment of CMV latency.IMPORTANCENumerous studies have focused on the infection of DC with cytomegaloviruses and on the establishment of latency within them. However, almost all of these studies have relied on the infection of DC monoculturesin vitro, whereas DC are just one among many cell types present in an infection sitein vivo. To mimic this aspect of thein vivosituation, we cocultured DC with infected endothelial cells or fibroblasts. Our data suggest that direct contact with virus-infected endothelial cells activates CD11c+DC, which leads to reversible suppression of MCMV replication at the level of IE gene expression by a mechanism that depends on type I IFN. The effect matches the formal definition of viral latency. Therefore, our data argue that the interplay of dendritic cells and infected neighboring cells might play an important role in the establishment of viral latency.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1050-1050
Author(s):  
Michael Gutknecht ◽  
Simone Joas ◽  
Lothar Kanz ◽  
Helmut R Salih ◽  
Susanne M Rittig ◽  
...  

Abstract Abstract 1050 Osteoactivin (GPNMB, DC-HIL) is a type I transmembrane glycoprotein that is expressed in dendritic cells (DC). Osteoactivin/syndecan-4 (SD-4) interaction was previously shown to inhibit T cell activation by antigen-presenting cells. We recently demonstrated that exposure of human peripheral blood monocytes to IL-10 or pharmacological levels of the BCR-ABL tyrosine kinase inhibitors (TKI) imatinib or nilotinib during differentiation into monocyte-derived DC (moDC) causes up-regulation of osteoactivin at the transcript and protein level in vitro (Schwarzbich et al., 2012). Here we aimed to elucidate the molecular mechanisms responsible for osteoactivin up-regulation in moDC upon exposure to IL-10 or TKI (imatinib, nilotinib). moDC were generated from blood monocytes by plastic adherence and exposure to GM-CSF and IL-4. Every second day, starting from the first day of culture, IL-10 or TKI were added to the culture medium. Alternatively, specific inhibitors of PI3K, Akt, Erk and/or C-Raf signal transduction pathways were added to the cell cultures. Cells were harvested on day 7 of culture for immunophenotyping and osteoactivin expression analysis using FACS, western-blotting and real-time qRT-PCR. The expression and activity of signal transduction molecules was monitored by western-blotting and pathway protein arrays. Analysis of moDC function was performed using mixed lymphocyte reactions (MLR). Our in vitro analysis revealed that IL-10 and BCR-ABL TKI inhibit the PI3K/Akt and, to a lesser extent, the Erk pathway in moDC. Specific inhibition of these signal transduction cascades resulted in profound up-regulation of osteoactivin expression in moDC confirming the involvement of PI3K/Akt and Erk in the regulation of osteoactivin expression. In line, TKI treatment and inhibition of PI3K/Akt and Erk comparably affected the phenotype of moDC. Moreover, the inhibition of these signalling cascades resulted in reduced stimulatory capacity of moDC in MLR with allogenic T cells, and this could be restored by addition of blocking osteoactivin antibody. Our data reveal that TKI exert immunosuppressive effects in moDC by interfering with pathways involved in IL-10 receptor signaling. Inhibition of osteoactivin expression or function may thus constitute a promising strategy in combinatory approaches using TKI and DC-based immunotherapy and may enhance the efficacy of immunotherapeutic interventions in cancer patients. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document