scholarly journals Tissue Tregs and Maintenance of Tissue Homeostasis

Author(s):  
Qing Shao ◽  
Jian Gu ◽  
Jinren Zhou ◽  
Qi Wang ◽  
Xiangyu Li ◽  
...  

Regulatory T cells (Tregs) specifically expressing Forkhead box P3 (Foxp3) play roles in suppressing the immune response and maintaining immune homeostasis. After maturation in the thymus, Tregs leave the thymus and migrate to lymphoid tissues or non-lymphoid tissues. Increasing evidence indicates that Tregs with unique characteristics also have significant effects on non-lymphoid peripheral tissues. Tissue-resident Tregs, also called tissue Tregs, do not recirculate in the blood or lymphatics and attain a unique phenotype distinct from common Tregs in circulation. This review first summarizes the phenotype, function, and cytokine expression of these Tregs in visceral adipose tissue, skin, muscle, and other tissues. Then, how Tregs are generated, home, and are attracted to and remain resident in the tissue are discussed. Finally, how an increased understanding of these tissue Tregs might guide clinical treatment is discussed.

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1004
Author(s):  
Sonia Kiran ◽  
Vijay Kumar ◽  
Santosh Kumar ◽  
Robert L Price ◽  
Udai P. Singh

Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue (AT) accompanied with alterations in the immune response that affects virtually all age and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation, type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA (miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages, and modulates the immune response. miRs are essential for insulin resistance, maintaining the tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation of AT, T-cells, and macrophage miRs may change the function of different organs including the pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated, the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning, adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease progression and therapeutic targets for obesity.


2010 ◽  
Vol 126 (6) ◽  
pp. 1242-1251 ◽  
Author(s):  
Alicia N. McMurchy ◽  
Jana Gillies ◽  
Sarah E. Allan ◽  
Laura Passerini ◽  
Eleonora Gambineri ◽  
...  

2007 ◽  
Vol 81 (17) ◽  
pp. 9502-9511 ◽  
Author(s):  
Chun-min Liang ◽  
Cui-ping Zhong ◽  
Rui-xia Sun ◽  
Bin-bin Liu ◽  
Cheng Huang ◽  
...  

ABSTRACT Development of an effective antitumor immune response depends on the appropriate interaction of effector and target cells. Thus, the expression of chemokines within the tumor may induce a more potent antitumor immune response. Secondary lymphoid tissue chemokine (SLC) is known to play a critical role in establishing a functional microenvironment in secondary lymphoid tissues. Its capacity to attract dendritic cells (DCs) and colocalize them with T cells makes it a good therapeutic candidate against cancer. In this study, we used SLC as a treatment for tumors established from a murine hepatocellular carcinoma model. SLC was encoded by recombinant adeno-associated virus (rAAV), a system chosen for the low host immunity and high efficiency of transduction, enabling long-term expression of the gene of interest. As a result, rAAV-SLC induced a significant delay of tumor progression, which was paralleled by a profound infiltration of DCs and activated CD4+ T cells and CD8+ T cells (CD3+ CD69+ cells) into the tumor site. In addition, rAAV-SLC treatment was also found to reduce tumor growth in nude mice, most likely due to inhibition of neoangiogenesis. In conclusion, local expression of SLC by rAAV represents a promising approach to induce immune-mediated regression of malignant tumors.


2011 ◽  
Vol 187 (12) ◽  
pp. 6208-6216 ◽  
Author(s):  
Carey N. Lumeng ◽  
Jianhua Liu ◽  
Lynn Geletka ◽  
Colin Delaney ◽  
Jennifer Delproposto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document