scholarly journals Cytotoxicity, Antimicrobial, and In Silico Studies of Secondary Metabolites From Aspergillus sp. Isolated From Tecoma stans (L.) Juss. Ex Kunth Leaves

2021 ◽  
Vol 9 ◽  
Author(s):  
Heba E. Elsayed ◽  
Reem A. Kamel ◽  
Reham R. Ibrahim ◽  
Ahmed S. Abdel-Razek ◽  
Mohamed A. Shaaban ◽  
...  

Endophytes are prolific producers of privileged secondary metabolites with diverse therapeutic potential, although their anticancer and antimicrobial potential still have a room for further investigation. Herein, seven known secondary metabolites namely, arugosin C (1), ergosterol (2), iso-emericellin (3), sterigmatocystin (4), dihydrosterigmatocystin (5), versicolorin B (6), and diorcinol (7) were isolated from the rice culture of Aspergillus sp. retrieved from Tecoma stans (L.) Juss. ex Kunth leaves. Their anticancer and antimicrobial activities were evaluated in MTT and agar well diffusion assays, respectively. The cytotoxicity results showed that metabolite 3 displayed the best viability inhibition on the MCF-7 breast cancer cells with IC50 = 225.21 µM, while 5 on the HepG2 hepatocellular carcinoma cells with IC50 = 161.81 µM. 5 demonstrated a 60% apoptotic mode of cell death which is virtually correlated to its high docking affinity to Hsp90 ATP binding cleft (binding score −8.4 Kcal/mol). On the other side, metabolites 4 and 5 displayed promising antimicrobial activity especially on Pseudomonas aeruginosa with MIC = 125 μg/ml. The observed effect may be likely related to their excellent in silico inhibition of the bacterial DNA-gyrase kinase domain (binding score −10.28 Kcal/mol). To the best of our knowledge, this study is the first to report the promising cytotoxic and antibacterial activities of metabolites 3, 4, and 5 which needs further investigation and renovation to therapeutic leads.

2020 ◽  
Vol 28 (2) ◽  
pp. 213-237 ◽  
Author(s):  
Andrea Mastinu ◽  
Giovanni Ribaudo ◽  
Alberto Ongaro ◽  
Sara Anna Bonini ◽  
Maurizio Memo ◽  
...  

: Cannabidiol (CBD) is a non-psychotropic phytocannabinoid which represents one of the constituents of the “phytocomplex” of Cannabis sativa. This natural compound is attracting growing interest since when CBD-based remedies and commercial products were marketed. This review aims to exhaustively address the extractive and analytical approaches that have been developed for the isolation and quantification of CBD. Recent updates on cutting-edge technologies were critically examined in terms of yield, sensitivity, flexibility and performances in general, and are reviewed alongside original representative results. As an add-on to currently available contributions in the literature, the evolution of the novel, efficient synthetic approaches for the preparation of CBD, a procedure which is appealing for the pharmaceutical industry, is also discussed. Moreover, with the increasing interest on the therapeutic potential of CBD and the limited understanding of the undergoing biochemical pathways, the reader will be updated about recent in silico studies on the molecular interactions of CBD towards several different targets attempting to fill this gap. Computational data retrieved from the literature have been integrated with novel in silico experiments, critically discussed to provide a comprehensive and updated overview on the undebatable potential of CBD and its therapeutic profile.


Author(s):  
Soorya R. ◽  
Dhamodaran P. ◽  
Rajesh Kumar R. ◽  
Duraisamy B.

Objective: Solanum torvum Sw., Family: Solanaceae, commonly known as Turkey Berry is used by the traditional tribes for the treatment of cold, cough, tuberculosis, hepatotoxicity, cancer, etc. The action of the plant towards the treatment of these diseases has been proven except for asthma. The present study is to prove the antiasthmatic activity of methanolic extract and the secondary metabolites of Solanum torvum Sw using in silico docking studies in compare to reference standard Dexamethasone, a synthetic cortisone derivative.Methods: The GC-MS analysis of the dried methanolic extract of the dried fruits of Solanum torvum Sw. and the total saponin fraction has been carried out to know the important moieties that are responsible for the antiasthmatic activity.Results: The results from the docking studies showed that the compounds Cholesta-5,7,9-(11)-trien-3-ol,4,4-dimethyl, (3á); Lanosta-7,9-(11),20-triene-3α, 18-diol, diacetate and Cholestan-26-oic acid,3,7,12,24-tetrakis (acetyloxy), methyl ester, (3à,5á,7à,12à) were found to have significant scores of-6.8,-6.9 and-6.9 respectively towards Glucocorticoid receptor protein (Gr), (PDB id: 4UDC) which is very similar to the affinity of the standard (-7.1). These compounds passed the drug-likeness test. A modification in the structure can be brought, which makes the compounds more potent. The compounds 9, 12-Octadecadienoic acid, ethyl ester; Hexadecanoic acid, ethyl ester; 9-Octadecenoic acid (Z), methyl ester; Oxacycloheptadec-8-en-2-one, (8Z) have passed the Blood Brain Barrier (BBB) filter of the drug-likeness test.Conclusion: The antiasthmatic activity of the drug may be due to the similarity with the structure of Dexamethasone. Further research can be carried out in order to improve the clinical significance of these extracts and its metabolites.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Saravanakumar Kandasamy ◽  
Sunil Kumar Sahu ◽  
Kathiresan Kandasamy

This work was to find out the dominant secondary metabolites derived from the fungus Trichoderma and to test them against skin cancer protein. The metabolites were extracted in 80% methanol from the fungal biomass of Trichoderma isolated from mangrove sediment. The crude methanol extract was purified and analysed for the secondary metabolites by GC-MS. Three predominant compounds (heptadecanoic acid, 16 methyl-, methyl ester; 9,12-octadecadienoic acid; cis-9-octadecenoic acid) identified in the extracts were screened against the skin cancer protein (Hsp90) by in-silico docking method. Of the compounds, heptadecanoic acid, 16 methyl, methyl ester was the most potent having the docking score of  Kcal/mol. This value was better than the standard drug “dyclonine”. This work recommends the heptadecanoic acid, 16 methyl, methyl ester for further in vitro and in vivo studies towards its development as anticancer drug.


2021 ◽  
Vol 33 (7) ◽  
pp. 1504-1512
Author(s):  
Manju Mathew ◽  
Muthuvel Ramanathan Ezhilarasi

A series of 4(5-(4-chlorophenyl)furan-2-yl)-6-phenylpyrimidin-2-amine derivatives (5a-h) were synthesized from 2-(4-chlorophenyl)-5-styrylfuran (3a-h) with guanidine nitrate in absolute ethanol under conventional method and evaluated for their in vitro anticancer, antimicrobial activities and in silico studies. The chemical structure of the furan moiety containing substituted amino pyrimidine derivatives (5a-h) were elucidated from spectroscopic analysis like infrared, 1H & 13C NMR spectral data and CHN analysis. in silico docking studies were predicted for the synthesized compounds (5a-h) using bacterial protein 1UAG and in silico ADME predictions were also carried for the synthesized compounds (5a-h). The in vitro anticancer study was carried the compound 5b by MMT assay. Compound 5b shows the LC50 value of 120.15 ± 0.003 μg/mL. in vitro Antimicrobial activities were screened for the compounds (5a-h) using different strains. Compound 5h has electron withdrawing group in benzene ring substituted in the para position showed good antimicrobial activity against all the bacterial strains and fungal strains. in silico studies, compound 5h shows excellent docking score (-9.7 kcal/mol) compared with ciprofloxacin (-7.8 kcal/mol).


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Babita Aryal ◽  
Bikash Adhikari ◽  
Niraj Aryal ◽  
Bibek Raj Bhattarai ◽  
Karan Khadayat ◽  
...  

Acacia catechu (L.f.) Willd is a profoundly used traditional medicinal plant in Asia. Previous studies conducted in this plant are more confined to extract level. Even though bioassay-based studies indicated the true therapeutic potential of this plant, compound annotation was not performed extensively. This research is aimed at assessing the bioactivity of different solvent extracts of the plant followed by annotation of its phytoconstituents. Liquid chromatography equipped with high resolution mass spectrometry (LC-HRMS) is deployed for the identification of secondary metabolites in various crude extracts. On activity level, its ethanolic extract showed the highest inhibition towards α-amylase and α-glucosidase with an IC50 of 67.8 ± 1  μg/mL and 10.3 ± 0.1  μg/mL respectively, inspected through the substrate-based method. On the other hand, the plant extract showed an antioxidant activity of 23.76 ± 1.57  μg/mL, measured through radical scavenging activity. Similarly, ethyl acetate and aqueous extracts of A. catechu showed significant inhibition against Staphylococcus aureus with a zone of inhibition (ZoI) of 13 and 14 mm, respectively. With the LC-HRMS-based dereplication strategy, we have identified 28 secondary metabolites belonging to flavonoid and phenolic categories. Identification of these metabolites from A. catechu and its biological implication also support the community-based usage of this plant and its medicinal value.


2017 ◽  
Vol 13 (1) ◽  
pp. 49-55
Author(s):  
Sevil Albayrak ◽  
Ahmet Aksoy ◽  
Abit Yasar ◽  
Lutfiye Yurtseven ◽  
Umit Budak

Objectives: In vitro biological activities of methanolic extracts of five Turanecio species have been studied. Materials and Methods: The phenolic compositions of the extracts were evaluated by the Folin- Ciocalteu assay and by HPLC analysis. Antioxidant activities were determined with two in vitro assays namely, DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay and phosphomolybdenum assay. The antimicrobial activities of the extracts were evaluated against 13 microorganisms. Results: T. hypochionaeus var. hypochionaeus was showed the highest DPPH inhibition with 88.84% at 100 μg·mL-1. All of the extracts were exerted high total antioxidant activities 128.00- 243.13 mg AAE g-1) and seem to be a promising source of natural antioxidants. The phenolic contents in the extracts varied from 26.17 to 60.99 mg·g-1 as gallic acid equivalent. Chlorogenic acid, caffeic acid and p- coumaric acid were the predominant constituents. The methanolic extracts revealed promising antibacterial activities against most bacteria. No activity was recorded against yeasts tested. Conclusion: The polyphenolic constituents appear to be responsible, at least in part, for the extract’s activities. The present study confirms that tested Turanecio species contains significant source of phenolics have antioxidant and antimicrobial activities and may have therapeutic potential.


2016 ◽  
Vol 124 ◽  
pp. 794-808 ◽  
Author(s):  
Tatjana Gazivoda Kraljević ◽  
Anja Harej ◽  
Mirela Sedić ◽  
Sandra Kraljević Pavelić ◽  
Višnja Stepanić ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 377
Author(s):  
Fuhang Song ◽  
Rui Lin ◽  
Na Yang ◽  
Jia Jia ◽  
Shangzhu Wei ◽  
...  

Four new secondary metabolites, including one spiro[anthracenone-xanthene] derivative aspergiloxathene A (1), one penicillide analogue, Δ2′-1′-dehydropenicillide (2), and two new phthalide derivatives, 5-methyl-3-methoxyepicoccone (3) and 7-carboxy-4-hydroxy-6-methoxy-5-methylphthalide (4), together with four known compounds, yicathin C (5), dehydropenicillide (6), 3-methoxyepicoccone (7), 4-hydroxy-6-methoxy-5-methylphthalide (8), were identified from the marine-derived fungus Aspergillus sp. IMCASMF180035. Their structures were determined by spectroscopic data, including high-resolution electrospray ionization mass spectrometry (HRESIMS), 1D and 2D nuclear magnetic resonance (NMR) techniques. Compound 1 was identified as the first jointed molecule by xanthene and anthracenone moieties possessing an unprecedented carbon skeleton with spiro-ring system. All compounds were evaluated activities against Staphylococcus aureus, methicillin resistant S. aureus (MRSA), Escherichia coli, Escherichia faecium, Pseudomonas aeruginosa, and Helicobacter pylori. Compound 1 showed significant inhibitory effects against S. aureus and MRSA, with minimum inhibitory concentration (MIC) values of 5.60 and 22.40 µM. Compounds 2 and 6 exhibited potent antibacterial activities against H. pylori, with MIC values of 21.73 and 21.61 µM, respectively.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 816
Author(s):  
Enas E. Eltamany ◽  
Sameh S. Elhady ◽  
Marwa S. Goda ◽  
Omar M. Aly ◽  
Eman S. Habib ◽  
...  

Coronavirus disease 2019 (COVID-19) is the disease caused by the virus SARS-CoV-2 responsible for the ongoing pandemic which has claimed the lives of millions of people. This has prompted the scientific research community to act to find treatments against the SARS-CoV-2 virus that include safe antiviral medicinal compounds. The edible green algae U. lactuca. is known to exhibit diverse biological activities such as anti-influenza virus, anti-Japanese encephalitis virus, immunomodulatory, anticoagulant, antioxidant and antibacterial activities. Herein, four new ceramides in addition to two known ones were isolated from Ulva lactuca. The isolated ceramides, including Cer-1, Cer-2, Cer-3, Cer-4, Cer-5 and Cer-6 showed promising antiviral activity against SARS-CoV-2 when investigated using in silico approaches by preventing its attachment to human cells and/or inhibiting its viral replication. Cer-4 and Cer-5 were the most effective in inhibiting the human angiotensin converting enzyme (hACE)–spike protein complex which is essential for the virus to enter the human host. In addition to this, Cer-4 also showed an inhibition of the SARS-CoV-2 protease (Mpro) that is responsible for its viral replication and transcription. In this study, we also used liquid chromatography coupled to electrospray ionization high-resolution mass spectroscopy (LC–ESI–HRMS) to identify several metabolites of U. lactuca, including metabolites such as fatty acids, their glyceride derivatives, terpenoids, sterols and oxysterols from the organic extract. Some of these metabolites also possessed promising antiviral activity, as previously reported.


Sign in / Sign up

Export Citation Format

Share Document